Illumination Insensitive Monocular Depth Estimation Based on Scene Object Attention and Depth Map Fusion

被引:0
|
作者
Wen, Jing [1 ,2 ]
Ma, Haojiang [1 ,2 ]
Yang, Jie [1 ,2 ]
Zhang, Songsong [1 ,2 ]
机构
[1] Shanxi Univ, Taiyuan, Peoples R China
[2] Minist Educ, Key Lab Comp Intelligence & Chinese Proc, Taiyuan, Peoples R China
来源
PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT X | 2024年 / 14434卷
关键词
Monocular depth estimation; Scene object attention; Weighted depth map fusion; Image enhancement; Illumination insensitivity;
D O I
10.1007/978-981-99-8549-4_30
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Monocular depth estimation (MDE) is a crucial but challenging computer vision (CV) task which suffers from lighting sensitivity, blurring of neighboring depth edges, and object omissions. To address these problems, we propose an illumination insensitive monocular depth estimation method based on scene object attention and depth map fusion. Firstly, we design a low-light image selection algorithm, incorporated with the EnlightenGAN model, to improve the image quality of the training dataset and reduce the influence of lighting on depth estimation. Secondly, we develop a scene object attention mechanism (SOAM) to address the issue of incomplete depth information in natural scenes. Thirdly, we design a weighted depth map fusion (WDMF) module to fuse depth maps with various visual granularity and depth information, effectively resolving the problem of blurred depth map edges. Extensive experiments on the KITTI dataset demonstrate that our method effectively reduces the sensitivity of the depth estimation model to light and yields depth maps with more complete scene object contours.
引用
收藏
页码:358 / 370
页数:13
相关论文
共 50 条
  • [31] Attention Mono-Depth: Attention-Enhanced Transformer for Monocular Depth Estimation of Volatile Kiln Burden Surface
    Liu, Cong
    Zhang, Chaobo
    Liang, Xiaojun
    Han, Zhiming
    Li, Yiming
    Yang, Chunhua
    Gui, Weihua
    Gao, Wen
    Wang, Xiaohao
    Li, Xinghui
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2025, 35 (02) : 1686 - 1699
  • [32] Monocular Depth Estimation Using Laplacian Pyramid-Based Depth Residuals
    Song, Minsoo
    Lim, Seokjae
    Kim, Wonjun
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (11) : 4381 - 4393
  • [33] Monocular Depth Estimation Based on Residual Pooling and Global-Local Feature Fusion
    Li, Linke
    Liang, Zhengyou
    Liang, Xinyu
    Li, Shun
    IEEE ACCESS, 2024, 12 : 122785 - 122794
  • [34] Dual-branch Monocular Depth Estimation Method with Attention Mechanism
    Zhou, Chengying
    He, Lixin
    Wang, Handong
    Cheng, Zhi
    Yang, Jing
    Cao, Shenjie
    2024 9TH INTERNATIONAL CONFERENCE ON ELECTRONIC TECHNOLOGY AND INFORMATION SCIENCE, ICETIS 2024, 2024, : 421 - 426
  • [35] SwinFusion: Channel Query-Response Based Feature Fusion for Monocular Depth Estimation
    Lai, Pengfei
    Yin, Mengxiao
    Yin, Yifan
    Xie, Min
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT II, 2024, 14426 : 246 - 258
  • [36] Unsupervised Monocular Estimation of Depth and Visual Odometry Using Attention and Depth-Pose Consistency Loss
    Song, Xiaogang
    Hu, Haoyue
    Liang, Li
    Shi, Weiwei
    Xie, Guo
    Lu, Xiaofeng
    Hei, Xinhong
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 3517 - 3529
  • [37] Multi-level Feature Maps Attention for Monocular Depth Estimation
    Lee, Seunghoon
    Lee, Minhyeok
    Lee, Sangyoon
    2021 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS-ASIA (ICCE-ASIA), 2021,
  • [38] CFDepthNet: Monocular Depth Estimation Introducing Coordinate Attention and Texture Features
    Wei, Feng
    Zhu, Jie
    Wang, Huibin
    Shen, Jie
    NEURAL PROCESSING LETTERS, 2024, 56 (03)
  • [39] Lightweight monocular depth estimation using a fusion-improved transformer
    Sui, Xin
    Gao, Song
    Xu, Aigong
    Zhang, Cong
    Wang, Changqiang
    Shi, Zhengxu
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [40] Deep Learning Based Monocular Depth Estimation: A Survey
    Jiang J.-J.
    Li Z.-Y.
    Liu X.-M.
    Jisuanji Xuebao/Chinese Journal of Computers, 2022, 45 (06): : 1276 - 1307