Vessel Behavior Anomaly Detection Using Graph Attention Network

被引:3
作者
Zhang, Yuanzhe [1 ]
Jin, Qiqiang [2 ]
Liang, Maohan [2 ]
Ma, Ruixin [3 ]
Liu, Ryan Wen [2 ]
机构
[1] Wuhan Univ Technol, Sch Comp & Artificial Intelligence, Wuhan 430070, Peoples R China
[2] Wuhan Univ Technol, Sch Nav, Wuhan 430063, Peoples R China
[3] MOT, Tianjin Res Inst Water Transport Engn, Tianjin 300456, Peoples R China
来源
NEURAL INFORMATION PROCESSING, ICONIP 2023, PT V | 2024年 / 14451卷
基金
中国国家自然科学基金;
关键词
Anomaly detection; Graph attention network; AIS data mining; FRAMEWORK;
D O I
10.1007/978-981-99-8073-4_23
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Vessel behavior anomaly detection is of great significance for ensuring navigation safety, combating maritime crimes, and maritime management. Unfortunately, most current researches ignore the temporal dependencies and correlations between ship features. We propose a novel vessel behavior anomaly detection using graph attention network (i.e., VBAD-GAT) framework, which characterizes these complicated relationships and dependencies through a graph attention module that consists of a time graph attention module and a feature graph attention module. We also adopt a process of graph structure learning to obtain the correct feature graph structure. Moreover, we propose a joint detection strategy combining reconstruction and prediction modules to capture the local ship features and long-term relationships between ship features. We demonstrate the effectiveness of the graph attention module and the joint detection strategy through the ablation study. In addition, the comparative experiments with three baselines, including the quantitative analysis and visualization, show that VBAD-GAT outperforms all other baselines.
引用
收藏
页码:291 / 304
页数:14
相关论文
共 28 条
[1]   GANomaly: Semi-supervised Anomaly Detection via Adversarial Training [J].
Akcay, Samet ;
Atapour-Abarghouei, Amir ;
Breckon, Toby P. .
COMPUTER VISION - ACCV 2018, PT III, 2019, 11363 :622-637
[2]  
Chung J., 2014, CORR, P2371
[3]   Malicious AIS Spoofing and Abnormal Stealth Deviations: A Comprehensive Statistical Framework for Maritime Anomaly Detection [J].
D'Afflisio, Enrica ;
Braca, Paolo ;
Willett, Peter .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2021, 57 (04) :2093-2108
[4]  
Ding K., Deep anomaly detection on attributed networks, P594, DOI [10.1137/1.9781611975673.67, DOI 10.1137/1.9781611975673.67]
[5]  
Goodfellow IJ, 2014, ADV NEUR IN, V27, P2672
[6]  
Hawkins D., 1980, Identification of Outliers, DOI [10.1007/978-94-015-3994-4, DOI 10.1007/978-94-015-3994-4]
[7]  
Hinton G. E., 1994, Advances in neural information processing systems, P3, DOI DOI 10.5555/2987189.2987190
[8]   Intelligent Anomaly Detection of Trajectories for IoT Empowered Maritime Transportation Systems [J].
Hu, Jia ;
Kaur, Kuljeet ;
Lin, Hui ;
Wang, Xiaoding ;
Hassan, Mohammad Mehedi ;
Razzak, Imran ;
Hammoudeh, Mohammad .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (02) :2382-2391
[9]   Robust and Explainable Autoencoders for Unsupervised Time Series Outlier Detection [J].
Kieu, Tung ;
Yang, Bin ;
Guo, Chenjuan ;
Jensen, Christian S. ;
Zhao, Yan ;
Huang, Feiteng ;
Zheng, Kai .
2022 IEEE 38TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2022), 2022, :3038-3050
[10]  
Kieu T, 2019, PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P2725