Semi-supervised Medical Image Segmentation with Multiscale Contrastive Learning and Cross-Supervision

被引:0
|
作者
Wu, Wenxia [1 ,2 ]
Yan, Jing [3 ]
Liang, Dong [1 ]
Zhang, Zhenyu [3 ]
Li, Zhi-Cheng [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Biomed & Hlth Engn, Shenzhen Inst Adv Technol, Shenzhen, Peoples R China
[2] Univ Chinese Acad Sci, Beijing, Peoples R China
[3] Zhengzhou Univ, Affiliated Hosp 1, Zhengzhou, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1109/EMBC40787.2023.10341018
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a semi-supervised segmentation method based on multiscale contrastive learning to solve the problem of shortage of annotations in medical image segmentation tasks. We apply perturbations to the input image and encoded features and make the output as consistent as possible by cross-supervision, which is a way to improve the generalizability of the model. Two scales of contrastive learning, patch-level and pixel-level, are employed to enhance the intra-class compactness and inter-class separability of the features. We evaluate the proposed model using three public datasets for brain tumor,left atrial, and cellular nuclei segmentation. The experiments showed that our model outperforms state-of-the-art methods.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] HCPSNet: heterogeneous cross-pseudo-supervision network with confidence evaluation for semi-supervised medical image segmentation
    Duan, Xianhua
    Jin, Chaoqiang
    Shu, Xin
    MULTIMEDIA SYSTEMS, 2023, 29 (05) : 2809 - 2823
  • [42] Inherent Consistent Learning for Accurate Semi-supervised Medical Image Segmentation
    Zhu, Ye
    Yang, Jie
    Liu, Si-Qi
    Zhang, Ruimao
    MEDICAL IMAGING WITH DEEP LEARNING, VOL 227, 2023, 227 : 1581 - 1601
  • [43] Semi-Supervised Learning With Fact-Forcing for Medical Image Segmentation
    Bui, Phuoc-Nguyen
    Le, Duc-Tai
    Bum, Junghyun
    Kim, Seongho
    Song, Su Jeong
    Choo, Hyunseung
    IEEE ACCESS, 2023, 11 : 99413 - 99425
  • [44] Exploring Feature Representation Learning for Semi-Supervised Medical Image Segmentation
    Wu, Huimin
    Li, Xiaomeng
    Cheng, Kwang-Ting
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (11) : 16589 - 16601
  • [45] Semi-supervised medical image segmentation network based on mutual learning
    Sun, Junmei
    Wang, Tianyang
    Wang, Meixi
    Li, Xiumei
    Xu, Yingying
    MEDICAL PHYSICS, 2025, 52 (03) : 1589 - 1600
  • [46] Multidimensional perturbed consistency learning for semi-supervised medical image segmentation
    Yuan, Enze
    Zhao, Bin
    Qin, Xiao
    Ding, Shuxue
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2024, 34 (03)
  • [47] Exploring Feature Representation Learning for Semi-Supervised Medical Image Segmentation
    Wu, Huimin
    Li, Xiaomeng
    Cheng, Kwang-Ting
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (11) : 16589 - 16601
  • [48] Semi-supervised CT image segmentation via contrastive learning based on entropy constraints
    Xiao, Zhiyong
    Sun, Hao
    Liu, Fei
    BIOMEDICAL ENGINEERING LETTERS, 2024, 14 (05) : 1023 - 1035
  • [49] Quality-driven deep cross-supervised learning network for semi-supervised medical image segmentation
    Zhang Z.
    Zhou H.
    Shi X.
    Ran R.
    Tian C.
    Zhou F.
    Computers in Biology and Medicine, 2024, 176
  • [50] Adversarial Dense Contrastive Learning for Semi-Supervised Semantic Segmentation
    Wang, Ying
    Xuan, Ziwei
    Ho, Chiuman
    Qi, Guo-Jun
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 4459 - 4471