Real-Time Detection of Low-Textured Objects based on Deep Learning

被引:0
|
作者
Laidoudi, Salah-eddine [1 ,2 ]
Maidi, Madjid [1 ,2 ]
Otmane, Samir [1 ]
机构
[1] Univ Evry, Univ Paris Saclay, IBISC, F-91020 Evry Courcouronnes, France
[2] ESME, ESME Res Lab, 38 Rue Moliere, Ivry, France
关键词
Custom SSD (Single Shot multi-box Detector); Fruit; 360; dataset; Low textured objects; CNN; Mixed Reality; Augmented Reality; !text type='Python']Python[!/text;
D O I
10.1109/MMSP59012.2023.10337653
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, a custom Single Shot Multi-box Detector (SSD) [1] is proposed for object detection on difficult scenes. The fruit 360 dataset [2], with low-textured images of different fruits and vegetables, is used as a training and validation data set. The purpose of this research is to implement the detector on mobile devices for mixed and augmented reality experiences, so a lighter weight SSD [1] model was designed while retaining its performance. The custom model is 4 times faster than the original SSD [1] model and the tests showed that it is even more accurate on the designated data set. The model is implemented in Python using Tensorflow and will soon be available on GitHub for public use.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Real-time pavement distress detection based on deep learning and visual sensors
    Liu, Zhen
    Liu, Deer
    Zhang, Lanxin
    Cai, Chengfeng
    Peng, Xin
    ROAD MATERIALS AND PAVEMENT DESIGN, 2024,
  • [32] A robust real-time deep learning based automatic polyp detection system
    Pacal, Ishak
    Karaboga, Dervis
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 134
  • [33] A deep learning based system for real-time detection and sorting of earthworm cocoons
    Celik, Ali
    Uguz, Sinan
    TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2022, 30 (05) : 1980 - 1994
  • [34] Deep learning based real-time tourist spots detection and recognition mechanism
    Chen, Yen-Chiu
    Yu, Kun-Ming
    Kao, Tzu-Hsiang
    Hsieh, Hao-Lun
    SCIENCE PROGRESS, 2021, 104
  • [35] Real-Time Pedestrian Detection for Driver Assistance Systems Based on Deep Learning
    Gong, Zhenfei
    Wang, Xinyu
    Tao, Wenbing
    TENTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2018), 2018, 10806
  • [36] Real-time detection method for bulk bubbles in optics based on deep learning
    Wang, Yue
    Cheng, Xinglei
    Qian, Changde
    Zhang, JianPu
    Hu, Xiaobo
    Wang, Hongxia
    Huang, Menghui
    Lu, An
    Sun, Huanyu
    Wang, Shiling
    Shen, Zheqiang
    Wu, Lan
    Liu, Dong
    APPLIED OPTICS, 2022, 61 (15) : 4344 - 4353
  • [37] Real-time detection of panoramic multitargets based on machine vision and deep learning
    Shen, Keyong
    Yang, Yang
    Zhang, Xiaoyu
    JOURNAL OF ELECTRONIC IMAGING, 2022, 31 (05)
  • [38] DEEP LEARNING BASED REAL-TIME FACIAL MASK DETECTION AND CROWD MONITORING
    Yang, Chan-Yun
    Samani, Hooman
    Ji, Nana
    Li, Chunxu
    Chen, Ding-Bang
    Qi, Man
    COMPUTING AND INFORMATICS, 2021, 40 (06) : 1263 - 1294
  • [39] Deep Learning-Based Real-Time Driver Cognitive Distraction Detection
    Fresta, Matteo
    Bellotti, Francesco
    Bochenko, Igor
    Lazzaroni, Luca
    Merlhiot, Gaetan
    Tango, Fabio
    Berta, Riccardo
    IEEE ACCESS, 2025, 13 : 26589 - 26607
  • [40] Real-time Quadrilateral Object Corner Detection Algorithm Based on Deep Learning
    Zhang, Jinfeng
    Jiao, Zhibin
    An, Xiangjing
    He, Yejun
    2019 COMPUTING, COMMUNICATIONS AND IOT APPLICATIONS (COMCOMAP), 2019, : 70 - 75