Annular regions containing all the zeros of a polynomial

被引:0
作者
Gulzar, Suhail [1 ]
Rather, N. A. [2 ]
Thakur, K. A.
机构
[1] Natl Inst Technol, Dept Math, Srinagar, J&K, India
[2] Univ Kashmir, Dept Math, Srinagar, India
关键词
Polynomials; Bounds for zeros; Location of zeros;
D O I
10.1007/s13226-023-00515-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A result due to T & ocirc;ya, Montel and Kuniyeda concerning the location of the zeros of a polynomial statesthat if P(z)=a(n)z(n)+a(n-1)z(n-1)+a(n-2)z(n-2)+<middle dot><middle dot><middle dot>+a(0 )is a polynomial of degree nt hen all its zeros lie in the disk |z| <= (1+A(p)(q))(1/q )where p>1, q>1 with 1/p+1/q=1 and A(p)=(& sum;(n-1)(j=0)divided by aj/an divided by(p))(1/p). In this paper, we refine this result and among other things obtain ring shaped regions containing all the zeros of a polynomial with complex coefficients
引用
收藏
页码:705 / 710
页数:6
相关论文
共 7 条
[1]   On the zeros of polynomials [J].
Aziz, A ;
Zargar, BA .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 1996, 106 (02) :127-132
[2]  
Cauchy A. L., 1829, Oeuvres, V9, P122
[3]  
Kuniyeda M., 1916, TOHOKU MATH J, V9, P167
[4]  
MARDEN M, 1949, MATH SURVEYS, V3
[5]  
Montel P, 1931, CR HEBD ACAD SCI, V193, P974
[6]  
Rahman Q. I., 2002, Analytic Theory of Polynomials, V26, DOI [DOI 10.1093/OSO/9780198534938.001.0001, 10.1093/oso/9780198534938.001.0001]
[7]  
Toya T.:., 1933, Sci. Rep. Tokyo Bunrika Daigaku, VA1, P275