CONVERGENCE OF A DECOUPLED SPLITTING SCHEME FOR THE CAHN-HILLIARD-NAVIER-STOKES SYSTEM

被引:9
|
作者
Liu, Chen [1 ]
Masri, Rami [2 ]
Riviere, Beatrice [3 ]
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
[2] Simula Res Lab, Dept Numer Anal & Sci Comp, N-0164 Oslo, Norway
[3] Rice Univ, Dept Computat Appl Math & Operat Res, Houston, TX 77005 USA
基金
美国国家科学基金会;
关键词
Cahn--Hilliard--Navier--Stokes; discontinuous Galerkin; stability; optimal error bounds; FINITE-ELEMENT APPROXIMATION; ENERGY-STABLE SCHEMES; DISCONTINUOUS GALERKIN METHODS; 2-PHASE INCOMPRESSIBLE FLOWS; ERROR ANALYSIS; 2ND-ORDER; TIME; EQUATION; SOBOLEV; MODEL;
D O I
10.1137/22M1528069
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to the analysis of an energy-stable discontinuous Galerkin algorithm for solving the Cahn-Hilliard-Navier-Stokes equations within a decoupled splitting framework. We show that the proposed scheme is uniquely solvable and mass conservative. The energy dissipation and the L degrees stability of the order parameter are obtained under a CFL-like constraint. Optimal a priori error estimates in the broken gradient norm and in the L2 norm are derived. The stability proofs and error analysis are based on induction arguments and do not require any regularization of the potential function.
引用
收藏
页码:2651 / 2694
页数:44
相关论文
共 50 条
  • [41] OPTIMAL L\bftwo ERROR ESTIMATES OF UNCONDITIONALLY STABLE FINITE ELEMENT SCHEMES FOR THE CAHN-HILLIARD-NAVIER-STOKES SYSTEM
    Cai, Wentao
    Sun, Weiwei
    Wang, Jilu
    Yang, Zongze
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2023, 61 (03) : 1218 - 1245
  • [42] Well-posedness for the Cahn-Hilliard-Navier-Stokes Equations with Random Initial Data
    Qiu, Zhaoyang
    Tang, Yanbin
    Wang, Huaqiao
    POTENTIAL ANALYSIS, 2023, 59 (02) : 753 - 770
  • [43] Error estimate of a decoupled numerical scheme for the Cahn-Hilliard-Stokes-Darcy system
    Chen, Wenbin
    Wang, Shufen
    Zhang, Yichao
    Han, Daozhi
    Wang, Cheng
    Wang, Xiaoming
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2022, 42 (03) : 2621 - 2655
  • [44] Optimal error estimates of a SAV-FEM for the Cahn-Hilliard-Navier-Stokes model
    Yang, Jinting
    Yi, Nianyu
    Chen, Yaoyao
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 438
  • [45] The vanishing viscosity limit for a 2D Cahn-Hilliard-Navier-Stokes system with a slip boundary condition
    Zhou, Yong
    Fan, Jishan
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2013, 14 (02) : 1130 - 1134
  • [46] A novel linear, unconditional energy stable scheme for the incompressible Cahn-Hilliard-Navier-Stokes phase-field model
    Jia, Hongen
    Wang, Xue
    Li, Kaitai
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 80 (12) : 2948 - 2971
  • [47] The exponential behavior of a stochastic globally modified Cahn-Hilliard-Navier-Stokes model with multiplicative noise
    Deugoue, G.
    Medjo, T. Tachim
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 460 (01) : 140 - 163
  • [48] NUMERICAL STUDY OF COMPRESSIBLE NAVIER-STOKES-CAHN-HILLIARD SYSTEM
    He, Qiaolin
    Shi, Xiaoding
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2020, 18 (02) : 571 - 591
  • [49] Uniquely Solvable and Energy Stable Decoupled Numerical Schemes for the Cahn-Hilliard-Navier-Stokes-Darcy-Boussinesq System
    Chen, Wenbin
    Han, Daozhi
    Wang, Xiaoming
    Zhang, Yichao
    JOURNAL OF SCIENTIFIC COMPUTING, 2020, 85 (02)