CONVERGENCE OF A DECOUPLED SPLITTING SCHEME FOR THE CAHN-HILLIARD-NAVIER-STOKES SYSTEM

被引:9
|
作者
Liu, Chen [1 ]
Masri, Rami [2 ]
Riviere, Beatrice [3 ]
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
[2] Simula Res Lab, Dept Numer Anal & Sci Comp, N-0164 Oslo, Norway
[3] Rice Univ, Dept Computat Appl Math & Operat Res, Houston, TX 77005 USA
基金
美国国家科学基金会;
关键词
Cahn--Hilliard--Navier--Stokes; discontinuous Galerkin; stability; optimal error bounds; FINITE-ELEMENT APPROXIMATION; ENERGY-STABLE SCHEMES; DISCONTINUOUS GALERKIN METHODS; 2-PHASE INCOMPRESSIBLE FLOWS; ERROR ANALYSIS; 2ND-ORDER; TIME; EQUATION; SOBOLEV; MODEL;
D O I
10.1137/22M1528069
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to the analysis of an energy-stable discontinuous Galerkin algorithm for solving the Cahn-Hilliard-Navier-Stokes equations within a decoupled splitting framework. We show that the proposed scheme is uniquely solvable and mass conservative. The energy dissipation and the L degrees stability of the order parameter are obtained under a CFL-like constraint. Optimal a priori error estimates in the broken gradient norm and in the L2 norm are derived. The stability proofs and error analysis are based on induction arguments and do not require any regularization of the potential function.
引用
收藏
页码:2651 / 2694
页数:44
相关论文
共 50 条
  • [21] Nonlocal Cahn-Hilliard-Navier-Stokes systems with singular potentials
    Frigeri, Sergio
    Grasselli, Maurizio
    DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2012, 9 (04) : 273 - 304
  • [22] On Nonlocal Cahn-Hilliard-Navier-Stokes Systems in Two Dimensions
    Frigeri, Sergio
    Gal, Ciprian G.
    Grasselli, Maurizio
    JOURNAL OF NONLINEAR SCIENCE, 2016, 26 (04) : 847 - 893
  • [23] Second-order decoupled energy-stable schemes for Cahn-Hilliard-Navier-Stokes equations
    Zhao, Jia
    Han, Daozhi
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 443
  • [24] On a SAV-MAC scheme for the Cahn-Hilliard-Navier-Stokes phase-field model and its error analysis for the corresponding Cahn-Hilliard-Stokes case
    Li, Xiaoli
    Shen, Jie
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2020, 30 (12) : 2263 - 2297
  • [25] Pullback exponential attractor for a Cahn-Hilliard-Navier-Stokes system in 2D
    Bosia, Stefano
    Gatti, Stefania
    DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2014, 11 (01) : 1 - 38
  • [26] Strong solutions to the density-dependent incompressible Cahn-Hilliard-Navier-Stokes system
    Zhao, Xiaopeng
    JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2019, 16 (04) : 701 - 742
  • [27] On the stationary nonlocal Cahn-Hilliard-Navier-Stokes system: Existence, uniqueness and exponential stability
    Biswas, Tania
    Dharmatti, Sheetal
    Mohan, Manil T.
    Perisetti, Lakshmi Naga Mahendranath
    ASYMPTOTIC ANALYSIS, 2021, 125 (1-2) : 59 - 99
  • [28] Random attractor for the stochastic Cahn-Hilliard-Navier-Stokes system with small additive noise
    Li, Fang
    You, Bo
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2018, 36 (03) : 546 - 559
  • [29] Convergence analysis of a second order numerical scheme for the Flory-Huggins-Cahn-Hilliard-Navier-Stokes system
    Chen, Wenbin
    Jing, Jianyu
    Liu, Qianqian
    Wang, Cheng
    Wang, Xiaoming
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 450
  • [30] An efficient numerical algorithm for solving viscosity contrast Cahn-Hilliard-Navier-Stokes system in porous media
    Liu, Chen
    Frank, Florian
    Thiele, Christopher
    Alpak, Faruk O.
    Berg, Steffen
    Chapman, Walter
    Riviere, Beatrice
    JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 400