CONVERGENCE OF A DECOUPLED SPLITTING SCHEME FOR THE CAHN-HILLIARD-NAVIER-STOKES SYSTEM

被引:12
作者
Liu, Chen [1 ]
Masri, Rami [2 ]
Riviere, Beatrice [3 ]
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
[2] Simula Res Lab, Dept Numer Anal & Sci Comp, N-0164 Oslo, Norway
[3] Rice Univ, Dept Computat Appl Math & Operat Res, Houston, TX 77005 USA
基金
美国国家科学基金会;
关键词
Cahn--Hilliard--Navier--Stokes; discontinuous Galerkin; stability; optimal error bounds; FINITE-ELEMENT APPROXIMATION; ENERGY-STABLE SCHEMES; DISCONTINUOUS GALERKIN METHODS; 2-PHASE INCOMPRESSIBLE FLOWS; ERROR ANALYSIS; 2ND-ORDER; TIME; EQUATION; SOBOLEV; MODEL;
D O I
10.1137/22M1528069
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to the analysis of an energy-stable discontinuous Galerkin algorithm for solving the Cahn-Hilliard-Navier-Stokes equations within a decoupled splitting framework. We show that the proposed scheme is uniquely solvable and mass conservative. The energy dissipation and the L degrees stability of the order parameter are obtained under a CFL-like constraint. Optimal a priori error estimates in the broken gradient norm and in the L2 norm are derived. The stability proofs and error analysis are based on induction arguments and do not require any regularization of the potential function.
引用
收藏
页码:2651 / 2694
页数:44
相关论文
共 34 条
[1]   CONE CONDITIONS AND PROPERTIES OF SOBOLEV SPACES [J].
ADAMS, RA ;
FOURNIER, J .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1977, 61 (03) :713-734
[2]   A finite element method for the numerical solution of the coupled Cahn-Hilliard and Navier-Stokes system for moving contact line problems [J].
Bao, Kai ;
Shi, Yi ;
Sun, Shuyu ;
Wang, Xiao-Ping .
JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (24) :8083-8099
[3]  
Brenner SC, 2004, ELECTRON T NUMER ANA, V18, P42
[4]   ERROR ESTIMATES FOR A FULLY DISCRETIZED SCHEME TO A CAHN-HILLIARD PHASE-FIELD MODEL FOR TWO-PHASE INCOMPRESSIBLE FLOWS [J].
Cai, Yongyong ;
Shen, Jie .
MATHEMATICS OF COMPUTATION, 2018, 87 (313) :2057-2090
[5]   Convergence of IPDG for coupled time-dependent Navier-Stokes and Darcy equations [J].
Chaabane, Nabil ;
Girault, Vivette ;
Puelz, Charles ;
Riviere, Beatrice .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 324 :25-48
[6]   A Positivity Preserving, Energy Stable Finite Difference Scheme for the Flory-Huggins-Cahn-Hilliard-Navier-Stokes System [J].
Chen, Wenbin ;
Jing, Jianyu ;
Wang, Cheng ;
Wang, Xiaoming .
JOURNAL OF SCIENTIFIC COMPUTING, 2022, 92 (02)
[7]   Efficient, adaptive energy stable schemes for the incompressible Cahn-Hilliard Navier-Stokes phase-field models [J].
Chen, Ying ;
Shen, Jie .
JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 308 :40-56
[8]   DISCRETE FUNCTIONAL ANALYSIS TOOLS FOR DISCONTINUOUS GALERKIN METHODS WITH APPLICATION TO THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS [J].
Di Pietro, Daniele A. ;
Ern, Alexandre .
MATHEMATICS OF COMPUTATION, 2010, 79 (271) :1303-1330
[9]   Convergence analysis and error estimates for a second order accurate finite element method for the Cahn-Hilliard-Navier-Stokes system [J].
Diegel, Amanda E. ;
Wang, Cheng ;
Wang, Xiaoming ;
Wise, Steven M. .
NUMERISCHE MATHEMATIK, 2017, 137 (03) :495-534
[10]   A time-stepping scheme involving constant coefficient matrices for phase-field simulations of two-phase incompressible flows with large density ratios [J].
Dong, S. ;
Shen, J. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (17) :5788-5804