Experimental Study on the Bond Performance between Glass-Fiber-Reinforced Polymer (GFRP) Bars and Concrete

被引:0
作者
Wang, Bo [1 ,2 ]
Liu, Gejia [1 ]
Miao, He [1 ]
机构
[1] Jilin Jianzhu Univ, Sch Civil Engn, Changchun 130118, Peoples R China
[2] Jilin Struct & Earthquake Resistance Technol Innov, Changchun 130118, Peoples R China
关键词
glass-fiber-reinforced polymer (GFRP); concrete; pullout; bond-slip; SEA SAND CONCRETE; FRP BARS; DURABILITY; BEHAVIOR; SEAWATER; MECHANISM; STRENGTH; COLUMNS; BASALT;
D O I
10.3390/buildings13092126
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
By investigating the bond performance between glass-fiber-reinforced polymer (GFRP) bars and concrete, GFRP bars can be better applied to concrete structures as a building material. This paper considered the effects of three different GFRP bar surface treatments, three bonding lengths, corrosive solution, and immersion time on the bonding strength. The test results indicated that the bond strength decreases with the increase in the diameter and bond length. The bonding between GFRP bars and concrete can be improved by treating the surface of the bars in different ways. Compared with the control group, the bond strength of the specimens in the saline solution decreased by 1.3-21.4%, and the bond strength of the specimens in the alkaline solution decreased by 26.5-38.8%. In the corrosive environment, the bond properties are degraded. A bond strength calculation formula considering the surface treatment method of the GFRP bars was proposed. The prediction formula of the bond strength retention rate between the GFRP bar and concrete in the corrosive environment was established. The formula was validated with the available research data and the calculated values agreed well with the test values. The MBPE model and CMR model are modified to establish the bond-slip model of the GFRP bars and concrete in the corrosive environment. The model curve is close to the test curve. This paper provides a theoretical basis for future research on the bond-slip performance of GFRP bars and concrete.
引用
收藏
页数:20
相关论文
共 46 条
  • [1] Bond degradation of basalt fiber-reinforced polymer (BFRP) bars exposed to accelerated aging conditions
    Altalmas, Ahmad
    El Refai, Ahmed
    Abed, Farid
    [J]. CONSTRUCTION AND BUILDING MATERIALS, 2015, 81 : 162 - 171
  • [2] [Anonymous], 2004, ACI 440.3R-04
  • [3] [Anonymous], 2011, ASTM D7205/D7205M-06
  • [4] [Anonymous], 2015, 4401R15 ACI
  • [5] [Anonymous], 2013, ASTM D1141-98
  • [6] [Anonymous], 2012, ACI 440.3R-12
  • [7] [Anonymous], 2006, ACI 440.1R-06: Guide for the design and construction of concrete reinforced with FRP bars
  • [8] A model specification for FRP composites for civil engineering structures
    Bank, LC
    Gentry, TR
    Thompson, BP
    Russell, JS
    [J]. CONSTRUCTION AND BUILDING MATERIALS, 2003, 17 (6-7) : 405 - 437
  • [9] Mechanism of surface preparation on FRP-Concrete bond performance: A quantitative study
    Chen, Cheng
    Li, Xue
    Zhao, Debo
    Huang, Zhenyu
    Sui, Lili
    Xing, Feng
    Zhou, Yingwu
    [J]. COMPOSITES PART B-ENGINEERING, 2019, 163 : 193 - 206
  • [10] Accelerated aging tests for evaluations of durability performance of FRP reinforcing bars for concrete structures
    Chen, Yi
    Davalos, Julio F.
    Ray, Indrajit
    Kim, Hyeong-Yeol
    [J]. COMPOSITE STRUCTURES, 2007, 78 (01) : 101 - 111