Improving the accuracy of automated gout flare ascertainment using natural language processing of electronic health records and linked Medicare claims data

被引:2
|
作者
Yoshida, Kazuki [1 ,2 ]
Cai, Tianrun [1 ,2 ]
Bessette, Lily G. [3 ]
Kim, Erin [3 ]
Lee, Su Been [3 ]
Zabotka, Luke E. [3 ]
Sun, Alec [3 ]
Mastrorilli, Julianna M. [3 ]
Oduol, Theresa A. [3 ]
Liu, Jun [3 ]
Solomon, Daniel H. [1 ,2 ,3 ]
Kim, Seoyoung C. [1 ,2 ,3 ]
Desai, Rishi J. [2 ,3 ]
Liao, Katherine P. [1 ,2 ,4 ]
机构
[1] Brigham & Womens Hosp, Dept Med, Div Rheumatol Inflammat & Immun, 75 Francis St, Boston, MA 02115 USA
[2] Harvard Med Sch, Dept Med, Boston, MA 02115 USA
[3] Brigham & Womens Hosp, Dept Med, Div Pharmacoepidemiol & Pharmacoecon, 75 Francis St, Boston, MA 02115 USA
[4] Harvard Med Sch, Dept Biomed Informat, Boston, MA 02115 USA
关键词
gout; natural language processing; AMERICAN-COLLEGE; VALIDATION; DEFINITION;
D O I
10.1002/pds.5684
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Background: We aimed to determine whether integrating concepts from the notes from the electronic health record (EHR) data using natural language processing (NLP) could improve the identification of gout flares. Methods: Using Medicare claims linked with EHR, we selected gout patients who initiated the urate-lowering therapy (ULT). Patients' 12-month baseline period and on treatment follow-up were segmented into 1-month units. We retrieved EHR notes for months with gout diagnosis codes and processed notes for NLP concepts. We selected a random sample of 500 patients and reviewed each of their notes for the presence of a physician-documented gout flare. Months containing at least 1 note mentioning gout flares were considered months with events. We used 60% of patients to train predictive models with LASSO. We evaluated the models by the area under the curve (AUC) in the validation data and examined positive/negative predictive values (P/NPV). Results: We extracted and labeled 839 months of follow-up (280 with gout flares). The claims-only model selected 20 variables (AUC = 0.69). The NLP concept-only model selected 15 (AUC = 0.69). The combined model selected 32 claims variables and 13 NLP concepts (AUC = 0.73). The claims-only model had a PPV of 0.64 [0.50, 0.77] and an NPV of 0.71 [0.65, 0.76], whereas the combined model had a PPV of 0.76 [0.61, 0.88] and an NPV of 0.71 [0.65, 0.76]. Conclusion: Adding NLP concept variables to claims variables resulted in a small improvement in the identification of gout flares. Our data-driven claims-only model and our combined claims/NLP-concept model outperformed existing rule-based claims algorithms reliant on medication use, diagnosis, and procedure codes.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Natural language processing for electronic health records in anaesthesiology: an introduction to clinicians with recommendations and pitfalls
    Bernstorff, Martin
    Vistisen, Simon Tilma
    Enevoldsen, Kenneth C.
    JOURNAL OF CLINICAL MONITORING AND COMPUTING, 2024, 38 (02) : 241 - 245
  • [32] Classification of Severe Maternal Morbidity from Electronic Health Records Written in Spanish Using Natural Language Processing
    Torres-Silva, Ever A.
    Rua, Santiago
    Giraldo-Forero, Andres F.
    Durango, Maria C.
    Florez-Arango, Jose F.
    Orozco-Duque, Andres
    APPLIED SCIENCES-BASEL, 2023, 13 (19):
  • [33] Risk prediction using natural language processing of electronic mental health records in an inpatient forensic psychiatry setting
    Duy Van Le
    Montgomery, James
    Kirkby, Kenneth C.
    Scanlan, Joel
    JOURNAL OF BIOMEDICAL INFORMATICS, 2018, 86 : 49 - 58
  • [34] Using natural language processing to identify opioid use disorder in electronic health record data
    Singleton, Jade
    Li, Chengxi
    Akpunonu, Peter D.
    Abner, Erin L.
    Kucharska-Newton, Anna M.
    INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2023, 170
  • [35] Identifying Information Gaps in Electronic Health Records by Using Natural Language Processing: Gynecologic Surgery History Identification
    Moon, Sungrim
    Carlson, Luke A.
    Moser, Ethan D.
    Kshatriya, Bhavani Singh Agnikula
    Smith, Carin Y.
    Rocca, Walter A.
    Rocca, Liliana Gazzuola
    Bielinski, Suzette J.
    Liu, Hongfang
    Larson, Nicholas B.
    JOURNAL OF MEDICAL INTERNET RESEARCH, 2022, 24 (01)
  • [36] Can Patients with Dementia Be Identified in Primary Care Electronic Medical Records Using Natural Language Processing?
    Maclagan, Laura C. C.
    Abdalla, Mohamed
    Harris, Daniel A. A.
    Stukel, Therese A. A.
    Chen, Branson
    Candido, Elisa
    Swartz, Richard H. H.
    Iaboni, Andrea
    Jaakkimainen, R. Liisa
    Bronskill, Susan E. E.
    JOURNAL OF HEALTHCARE INFORMATICS RESEARCH, 2023, 7 (01) : 42 - 58
  • [37] Using Natural Language Processing and Machine Learning to Identify Opioids in Electronic Health Record Data
    McDermott, Sean P.
    Wasan, Ajay D.
    JOURNAL OF PAIN RESEARCH, 2023, 16 : 2133 - 2140
  • [38] Assessing the accuracy of opioid overdose and poisoning codes in diagnostic information from electronic health records, claims data, and death records
    Green, Carla A.
    Perrin, Nancy A.
    Janoff, Shannon L.
    Campbell, Cynthia I.
    Chilcoat, Howard D.
    Coplan, Paul M.
    PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2017, 26 (05) : 509 - 517
  • [39] Extracting Family History Information From Electronic Health Records: Natural Language Processing Analysis
    Rybinski, Maciej
    Dai, Xiang
    Singh, Sonit
    Karimi, Sarvnaz
    Nguyen, Anthony
    JMIR MEDICAL INFORMATICS, 2021, 9 (04)
  • [40] Development of a phenotype ontology for autism spectrum disorder by natural language processing on electronic health records
    Zhao, Mengge
    Havrilla, James
    Peng, Jacqueline
    Drye, Madison
    Fecher, Maddie
    Guthrie, Whitney
    Tunc, Birkan
    Schultz, Robert
    Wang, Kai
    Zhou, Yunyun
    JOURNAL OF NEURODEVELOPMENTAL DISORDERS, 2022, 14 (01)