Improving the accuracy of automated gout flare ascertainment using natural language processing of electronic health records and linked Medicare claims data

被引:2
|
作者
Yoshida, Kazuki [1 ,2 ]
Cai, Tianrun [1 ,2 ]
Bessette, Lily G. [3 ]
Kim, Erin [3 ]
Lee, Su Been [3 ]
Zabotka, Luke E. [3 ]
Sun, Alec [3 ]
Mastrorilli, Julianna M. [3 ]
Oduol, Theresa A. [3 ]
Liu, Jun [3 ]
Solomon, Daniel H. [1 ,2 ,3 ]
Kim, Seoyoung C. [1 ,2 ,3 ]
Desai, Rishi J. [2 ,3 ]
Liao, Katherine P. [1 ,2 ,4 ]
机构
[1] Brigham & Womens Hosp, Dept Med, Div Rheumatol Inflammat & Immun, 75 Francis St, Boston, MA 02115 USA
[2] Harvard Med Sch, Dept Med, Boston, MA 02115 USA
[3] Brigham & Womens Hosp, Dept Med, Div Pharmacoepidemiol & Pharmacoecon, 75 Francis St, Boston, MA 02115 USA
[4] Harvard Med Sch, Dept Biomed Informat, Boston, MA 02115 USA
关键词
gout; natural language processing; AMERICAN-COLLEGE; VALIDATION; DEFINITION;
D O I
10.1002/pds.5684
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Background: We aimed to determine whether integrating concepts from the notes from the electronic health record (EHR) data using natural language processing (NLP) could improve the identification of gout flares. Methods: Using Medicare claims linked with EHR, we selected gout patients who initiated the urate-lowering therapy (ULT). Patients' 12-month baseline period and on treatment follow-up were segmented into 1-month units. We retrieved EHR notes for months with gout diagnosis codes and processed notes for NLP concepts. We selected a random sample of 500 patients and reviewed each of their notes for the presence of a physician-documented gout flare. Months containing at least 1 note mentioning gout flares were considered months with events. We used 60% of patients to train predictive models with LASSO. We evaluated the models by the area under the curve (AUC) in the validation data and examined positive/negative predictive values (P/NPV). Results: We extracted and labeled 839 months of follow-up (280 with gout flares). The claims-only model selected 20 variables (AUC = 0.69). The NLP concept-only model selected 15 (AUC = 0.69). The combined model selected 32 claims variables and 13 NLP concepts (AUC = 0.73). The claims-only model had a PPV of 0.64 [0.50, 0.77] and an NPV of 0.71 [0.65, 0.76], whereas the combined model had a PPV of 0.76 [0.61, 0.88] and an NPV of 0.71 [0.65, 0.76]. Conclusion: Adding NLP concept variables to claims variables resulted in a small improvement in the identification of gout flares. Our data-driven claims-only model and our combined claims/NLP-concept model outperformed existing rule-based claims algorithms reliant on medication use, diagnosis, and procedure codes.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Improving Adherence to Clinical Pathways Through Natural Language Processing on Electronic Medical Records
    Cruz, Noa P.
    Canales, Lea
    Garcia Munoz, Javier
    Perez, Bernardino
    Arnott, Ignacio
    MEDINFO 2019: HEALTH AND WELLBEING E-NETWORKS FOR ALL, 2019, 264 : 561 - 565
  • [22] Applying Natural Language Processing Toolkits to Electronic Health Records - An Experience Report
    Barrett, Neil
    Weber-Jahnke, Jens H.
    ADVANCES IN INFORMATION TECHNOLOGY AND COMMUNICATION IN HEALTH, 2009, 143 : 441 - 446
  • [23] Automated risk assessment of newly detected atrial fibrillation poststroke from electronic health record data using machine learning and natural language processing
    Sung, Sheng-Feng
    Sung, Kuan-Lin
    Pan, Ru-Chiou
    Lee, Pei-Ju
    Hu, Ya-Han
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2022, 9
  • [24] Detecting inpatient falls by using natural language processing of electronic medical records
    Toyabe, Shin-ichi
    BMC HEALTH SERVICES RESEARCH, 2012, 12
  • [25] Automated detection of sudden unexpected death in epilepsy risk factors in electronic medical records using natural language processing
    Barbour, Kristen
    Hesdorffer, Dale C.
    Tian, Niu
    Yozawitz, Elissa G.
    McGoldrick, Patricia E.
    Wolf, Steven
    McDonough, Tiffani L.
    Nelson, Aaron
    Loddenkemper, Tobias
    Basma, Natasha
    Johnson, Stephen B.
    Grinspan, Zachary M.
    EPILEPSIA, 2019, 60 (06) : 1209 - 1220
  • [26] Natural language processing for electronic health records in anaesthesiology: an introduction to clinicians with recommendations and pitfalls
    Martin Bernstorff
    Simon Tilma Vistisen
    Kenneth C. Enevoldsen
    Journal of Clinical Monitoring and Computing, 2024, 38 : 241 - 245
  • [27] Development of a natural language processing algorithm to detect chronic cough in electronic health records
    Vishal Bali
    Jessica Weaver
    Vladimir Turzhitsky
    Jonathan Schelfhout
    Misti L. Paudel
    Erin Hulbert
    Jesse Peterson-Brandt
    Anne-Marie Guerra Currie
    Dylan Bakka
    BMC Pulmonary Medicine, 22
  • [28] Development of a natural language processing algorithm to detect chronic cough in electronic health records
    Bali, Vishal
    Weaver, Jessica
    Turzhitsky, Vladimir
    Schelfhout, Jonathan
    Paudel, Misti L.
    Hulbert, Erin
    Peterson-Brandt, Jesse
    Currie, Anne-Marie Guerra
    Bakka, Dylan
    BMC PULMONARY MEDICINE, 2022, 22 (01)
  • [29] Cohort design and natural language processing to reduce bias in electronic health records research
    Khurshid, Shaan
    Reeder, Christopher
    Harrington, Lia X.
    Singh, Pulkit
    Sarma, Gopal
    Friedman, Samuel F.
    Di Achille, Paolo
    Diamant, Nathaniel
    Cunningham, Jonathan W.
    Turner, Ashby C.
    Lau, Emily S.
    Haimovich, Julian S.
    Al-Alusi, Mostafa A.
    Wang, Xin
    Klarqvist, Marcus D. R.
    Ashburner, Jeffrey M.
    Diedrich, Christian
    Ghadessi, Mercedeh
    Mielke, Johanna
    Eilken, Hanna M.
    McElhinney, Alice
    Derix, Andrea
    Atlas, Steven J.
    Ellinor, Patrick T.
    Philippakis, Anthony A.
    Anderson, Christopher D.
    Ho, Jennifer E.
    Batra, Puneet
    Lubitz, Steven A.
    NPJ DIGITAL MEDICINE, 2022, 5 (01)
  • [30] Detecting inpatient falls by using natural language processing of electronic medical records
    Shin-ichi Toyabe
    BMC Health Services Research, 12