Denser is Better:cost distribution super-resolution network for more accurate sub-pixel disparity

被引:0
|
作者
Zhang, Hong [1 ]
Chen, Shenglun [1 ]
Wang, Zhihui [1 ]
Li, Haojie [1 ]
Ouyang, Wanli [2 ]
机构
[1] Dalian Univ Technol, Dalian, Peoples R China
[2] Univ Sydney, Sydney, NSW, Australia
来源
2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME | 2023年
基金
中国国家自然科学基金;
关键词
Stereo matching; sub pixel; depth estimation; Voting mechanism;
D O I
10.1109/ICME55011.2023.00087
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The low-quality cost distribution obtained by simple upsampling leads to disparity maps with many outliers and low sub-pixel accuracy. We propose the Cost Distribution Super-Resolution Network (CDSRNet), which directly extracts high-resolution cost distribution from the low-resolution 4D cost volume. The similarity extraction module of CDSRNet decomposes the task of estimating high-resolution cost distribution into multiple subtasks and completes each subtask by a specific translation block, ensuring high discrimination of the predicted cost distribution. The inter-block aggregation module aggregates information from other subtasks, obtaining a voting volume with global information for correcting errors in the current subtask. Experiment results demonstrate that the proposed method significantly reduces the ratio of outliers and improves the sub-pixel accuracy.
引用
收藏
页码:468 / 473
页数:6
相关论文
共 50 条
  • [1] Sub-Pixel Convolutional Neural Network for Image Super-Resolution Reconstruction
    Shao, Guifang
    Sun, Qiao
    Gao, Yunlong
    Zhu, Qingyuan
    Gao, Fengqiang
    Zhang, Junfa
    ELECTRONICS, 2023, 12 (17)
  • [2] Efficient sub-pixel convolutional neural network for terahertz image super-resolution
    Ruan, Haihang
    Tan, Zhiyong
    Chen, Liangtao
    Wan, Wenjain
    Cao, Juncheng
    OPTICS LETTERS, 2022, 47 (12) : 3115 - 3118
  • [3] Soccer Video Super-Resolution via Sub-Pixel Convolutional Neural Network
    Wang, Haoyu
    Lu, Yao
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,
  • [4] SUB-PIXEL MAPPING WITH HYPERSPECTRAL IMAGES USING SUPER-RESOLUTION
    Gaur, S.
    Buddhiraju, K. M.
    Porwal, A.
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 2459 - 2462
  • [5] Sub-pixel Layout for Super-Resolution with Images in the Octic Group
    Shi, Boxin
    Zhao, Hang
    Ben-Ezra, Moshe
    Yeung, Sai-Kit
    Fernandez-Cull, Christy
    Shepard, R. Hamilton
    Barsi, Christopher
    Raskar, Ramesh
    COMPUTER VISION - ECCV 2014, PT I, 2014, 8689 : 250 - 264
  • [6] A video super-resolution reconstruction method based on sub-pixel registration
    School of Electronic and Information Engineering, Sichuan University, Chengdu 610064, China
    不详
    Guangdianzi Jiguang, 7 (972-976):
  • [7] Noniterative sub-pixel shifting super-resolution lensless digital holography
    Lee, Heejung
    Kim, Jongwu
    Kim, Junwoo
    Jeon, Philjun
    Lee, Seung Ah
    Kim, Dugyoung
    OPTICS EXPRESS, 2021, 29 (19) : 29996 - 30006
  • [8] Super-resolution image reconstruction algorithm based on sub-pixel shift
    Zhang, Dong-Xiao
    Lu, Lin
    Li, Cui-Hua
    Jin, Tai-Song
    Zidonghua Xuebao/Acta Automatica Sinica, 2014, 40 (12): : 2851 - 2861
  • [9] A Super-resolution Imaging System Based on Sub-Pixel Camera Shifting
    Liu, Gangping
    Zhou, Qun
    Zhang, Linxia
    Ke, Jun
    OPTOELECTRONIC IMAGING AND MULTIMEDIA TECHNOLOGY V, 2018, 10817
  • [10] Convolutional network architectures for super-resolution/sub-pixel mapping of drone-derived images
    Arun, Pattathal V.
    Herrmann, Ittai
    Budhiraju, Krishna M.
    Karnieli, Arnon
    PATTERN RECOGNITION, 2019, 88 : 431 - 446