A self-powered biosensing system based on triboelectric nanogenerator for rapid bacterial DNA detection

被引:14
|
作者
Qu, Xiaolin [1 ,2 ,3 ]
Qi, Peng [2 ,3 ]
Wang, Peng [2 ,3 ]
Li, Jiawei [2 ,3 ]
Wang, Congyu [2 ,3 ]
Zhang, Dun [2 ,3 ]
Wan, Yi [4 ]
Ai, Shiyun [5 ]
Wang, Xiaoqiang [1 ]
机构
[1] China Univ Petr East China, Coll Chem & Chem Engn, State Key Lab Heavy Oil Proc, Qingdao 266580, Peoples R China
[2] Chinese Acad Sci, Inst Oceanol, Key Lab Marine Environm Corros & Biofouling, Qingdao 266071, Peoples R China
[3] Pilot Natl Lab Marine Sci & Technol Qingdao, Open Studio Marine Corros & Protect, 168 Wenhai Middle Rd, Qingdao 266237, Peoples R China
[4] Hainan Univ, State Key Lab Marine Resource Utilizat South Chin, Key Lab Trop Biol Resources, Marine Coll,Minist Educ,Sch Life & Pharmaceut Sci, 56 Renmin Rd, Haikou 570228, Hainan, Peoples R China
[5] Shandong Agr Univ, Coll Chem & Mat Sci, Food Safety Anal & Test Engn Technol Res Ctr Shand, Tai An 271018, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Triboelectric nanogenerator; Self-powering; DNA biosensor; Bacterial DNA; Mathematical model; SULFATE-REDUCING BACTERIA; REAL-TIME; ULTRASENSITIVE DETECTION; MICROFLUIDIC PLATFORM; HEALTHY-SUBJECTS; LABEL-FREE; SENSOR; ADSORPTION; CHEMILUMINESCENCE; NANOPARTICLES;
D O I
10.1016/j.snb.2023.133917
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
A self-powered biosensing system based on triboelectric nanogenerator (TENG) for bacterial DNA detection is invented and a vertical contact-separation TENG was designed to provide a steady power supply to a detection bioreactor. A carboxyl-functionalized capture probe was modified on etched indium tin oxide (ITO) glass, with which target bacterial DNA could be recognized. Meanwhile, multi-walled carbon-nanotubes (CNT)-modified signal probe was designed to amplify the detection signal due to its excellent electrical conductivity. The selfpowered biosensing system could measure the variation in output voltage and be highly sensible with a low detection limit at 0.084 pM of target DNA. In addition, a mathematical model based on the Freundlich isotherm was built to simulate the DNA detection process, and it was feasible to simulate the calibration equation and detection range. A portable self-powered biosensing device was made by integrating miniaturized TENG and bioreactor in a 3D-printed mold, with which the presence of bacterial DNA could be instantly indicated by LED (light-emitting diode). This study provided a useful platform for quick bacterial DNA detection and paved the way for further development of pocket diagnosis with TENG-based biosensing systems.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Triboelectric nanogenerator for self-powered traffic monitoring
    Behera, Swayam Aryam
    Kim, Hang-Gyeom
    Jang, Il Ryu
    Hajra, Sugato
    Panda, Swati
    Vittayakorn, Naratip
    Kim, Hoe Joon
    Achary, P. Ganga Raju
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2024, 303
  • [22] Self-powered wireless sensing technologies based on triboelectric nanogenerator
    Si, Jiawei
    Yang, Jin
    Zhu, Zhaofeng
    Li, Zhukun
    Lai, Haiyang
    Han, Lei
    NANOTECHNOLOGY, 2025, 36 (13)
  • [23] A Self-Powered Basketball Training Sensor Based on Triboelectric Nanogenerator
    Zhao, Zhenyu
    Wu, Chuan
    Zhou, Qing
    APPLIED SCIENCES-BASEL, 2021, 11 (08):
  • [24] Triboelectric nanogenerator based self-powered sensor for artificial intelligence
    Zhou, Yuankai
    Shen, Maoliang
    Cui, Xin
    Shao, Yicheng
    Li, Lijie
    Zhang, Yan
    NANO ENERGY, 2021, 84
  • [25] A self-powered character recognition device based on a triboelectric nanogenerator
    Tcho, Il-Woong
    Kim, Weon-Guk
    Choi, Yang-Kyu
    NANO ENERGY, 2020, 70
  • [26] Self-powered wearable keyboard with fabric based triboelectric nanogenerator
    Jeon, Seung-Bae
    Park, Sang-Jae
    Kim, Weon-Guk
    Tcho, Il-Woong
    Jin, Ik-Kyeong
    Han, Joon-Kyu
    Kim, Daewon
    Choi, Yang-Kyu
    NANO ENERGY, 2018, 53 : 596 - 603
  • [27] Self-powered liquid crystal lens based on a triboelectric nanogenerator
    Chen, Wandi
    Wang, Wenwen
    Li, Shiyao
    Kang, Jiaxin
    Zhang, Yongai
    Yan, Qun
    Guo, Tailiang
    Zhou, Xiongtu
    Wu, Chaoxing
    NANO ENERGY, 2023, 107
  • [28] Instantaneous Self-Powered Sensing System Based on Planar-Structured Rotary Triboelectric Nanogenerator
    Kuang, Shuangyang
    Suo, Xiaochen
    Song, Peiyi
    Luo, Jianjun
    SENSORS, 2021, 21 (11)
  • [29] Self-powered wind detection and positioning system for hot air balloon based on multi-module triboelectric nanogenerator
    Gu, Jiayi
    Gong, Xueying
    Lu, Taining
    Zheng, Li
    Li, Hexing
    NANO ENERGY, 2023, 116
  • [30] Self-powered wireless automatic countering system based on triboelectric nanogenerator for smart logistics
    Kang, Mengzhe
    Cui, Xin
    Zhou, Yuankai
    Han, Yiming
    Nie, Jiaheng
    Zhang, Yan
    NANO ENERGY, 2024, 123