Wulff shape symmetry of solutions to overdetermined problems for Finsler Monge-Ampere equations

被引:2
作者
Cianchi, Andrea [1 ]
Salani, Paolo [1 ]
机构
[1] Univ Firenze, Dipartimento Matemat U Dini, Viale Morgagni 67-A, I-50134 Florence, Italy
关键词
Anisotropic Monge-Ampere equation; Overdetermined boundary conditions; Symmetry of solutions; Wulff shape; PARTIAL REGULARITY; SYMMETRIZATION; DEGENERATE;
D O I
10.1016/j.jfa.2023.110091
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We deal with Monge-Ampere type equations modeled upon general Finsler norms H in Rn. An overdetermined problem for convex solutions to these equations is analyzed. The relevant solutions are subject to both a homogeneous Dirichlet condition and a second boundary condition, designed on H, on the gradient image of the domain. The Wulff shape symmetry associated with H of the solutions is established. & COPY; 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:21
相关论文
共 42 条
[31]  
MARCUS M, 1972, ARCH RATION MECH AN, V45, P294
[32]   The classical overdetermined Serrin problem [J].
Nitsch, C. ;
Trombetti, C. .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2018, 63 (7-8) :1107-1122
[33]  
Rockafellar R. T., 1970, CONVEX ANAL, DOI 10.1515/9781400873173
[34]   Global W2,1+ε estimates for Monge-Ampere equation with natural boundary condition [J].
Savin, Ovidiu ;
Yu, Hui .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2020, 137 :275-289
[35]   W2,1+ε estimates for the Monge-Ampere equation [J].
Schmidt, Thomas .
ADVANCES IN MATHEMATICS, 2013, 240 :672-689
[36]  
Schneider Rolf, 1993, Convex Bodies: The Brunn-Minkowski Theory
[37]  
SERRIN J, 1971, ARCH RATION MECH AN, V43, P304
[38]   Overdetermined problems for fully nonlinear elliptic equations [J].
Silvestre, Luis ;
Sirakov, Boyan .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (01) :989-1007
[39]   CRYSTALLINE VARIATIONAL PROBLEMS [J].
TAYLOR, JE .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 84 (04) :568-588
[40]   Blow-up analysis of a Finsler-Liouville equation in two dimensions [J].
Wang, Guofang ;
Xia, Chao .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (02) :1668-1700