A simple method for convex optimization in the oracle model

被引:0
|
作者
Dadush, Daniel [1 ]
Hojny, Christopher [2 ]
Huiberts, Sophie [3 ]
Weltge, Stefan [4 ]
机构
[1] Ctr Wiskunde & Informat, Amsterdam, Netherlands
[2] Eindhoven Univ Technol, Eindhoven, Netherlands
[3] Columbia Univ, New York, NY USA
[4] Tech Univ Munich, Munich, Germany
基金
欧洲研究理事会;
关键词
Convex optimization; Separation oracle; Cutting plane method; APPROXIMATION ALGORITHMS; FRACTIONAL PACKING; PERCEPTRON; FLOW;
D O I
10.1007/s10107-023-02005-8
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We give a simple and natural method for computing approximately optimal solutions for minimizing a convex function f over a convex set K given by a separation oracle. Our method utilizes the Frank-Wolfe algorithm over the cone of valid inequalities of K and subgradients of f . Under the assumption that f is L-Lipschitz and that K contains a ball of radius r and is contained inside the origin centered ball of radius ((R L)2 ) R, using O((RL)(2)/(e)2 . R-2/ r(2)) iterations and calls to the oracle, our main method outputs a point x ? K satisfying f (x) = e +min(z?K) f (z). Our algorithm is easy to implement, and we believe it can serve as a useful alternative to existing cutting plane methods. As evidence towards this, we show that it compares favorably in terms of iteration counts to the standard LP based cutting plane method and the analytic center cutting plane method, on a testbed of combinatorial, semidefinite and machine learning instances.
引用
收藏
页码:283 / 304
页数:22
相关论文
共 50 条
  • [21] On the Convergence of Proximal Gradient Methods for Convex Simple Bilevel Optimization
    Latafat, Puya
    Themelis, Andreas
    Villa, Silvia
    Patrinos, Panagiotis
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2025, 204 (03)
  • [22] A piecewise conservative method for unconstrained convex optimization
    Scagliotti, A.
    Franzone, P. Colli
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2022, 81 (01) : 251 - 288
  • [23] A piecewise conservative method for unconstrained convex optimization
    A. Scagliotti
    P. Colli Franzone
    Computational Optimization and Applications, 2022, 81 : 251 - 288
  • [24] A Trajectory Tracking Method Using Convex Optimization
    An, Ze
    Xiong, FenFen
    Li, Chao
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 3281 - 3287
  • [25] TRUNCATED CODIFFERENTIAL METHOD FOR NONSMOOTH CONVEX OPTIMIZATION
    Bagirov, A. M.
    Ganjehlou, A. Nazari
    Ugon, J.
    Tor, A. H.
    PACIFIC JOURNAL OF OPTIMIZATION, 2010, 6 (03): : 483 - 496
  • [26] Oracle-based optimization applied to climate model calibration
    Cesar Beltran
    N. R. Edwards
    A. B. Haurie
    J.-P. Vial
    D. S. Zachary
    Environmental Modeling & Assessment, 2006, 11 : 31 - 43
  • [27] Oracle-based optimization applied to climate model calibration
    Beltran, C
    Edwards, NR
    Haurie, AB
    Vial, JP
    Zachary, DS
    ENVIRONMENTAL MODELING & ASSESSMENT, 2006, 11 (01) : 31 - 43
  • [28] On Learning the Energy Model of an MPSoC for Convex Optimization
    Nogues, E.
    Menard, D.
    Mercat, A.
    Pelcat, M.
    ACM INTERNATIONAL CONFERENCE ON COMPUTING FRONTIERS 2017, 2017, : 385 - 390
  • [29] Accuracy Certificates for Convex Minimization with Inexact Oracle
    Gladin, Egor
    Gasnikov, Alexander
    Dvurechensky, Pavel
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2025, 204 (01)
  • [30] Adaptive Stochastic Gradient Descent Method for Convex and Non-Convex Optimization
    Chen, Ruijuan
    Tang, Xiaoquan
    Li, Xiuting
    FRACTAL AND FRACTIONAL, 2022, 6 (12)