THE SAMPLING COMPLEXITY ON NONCONVEX SPARSE PHASE RETRIEVAL PROBLEM

被引:1
作者
Xia, Yu [1 ]
Zhou, Likai [2 ]
机构
[1] Hangzhou Normal Univ, Sch Math, Hangzhou 311121, Peoples R China
[2] Zhejiang Univ Finance & Econ, Sch Data Sci, Hangzhou 310018, Peoples R China
来源
JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS | 2023年 / 7卷 / 04期
关键词
Nonconvex optimization; Restricted isometry property; Sampling complexity; Sparse phase retrieval; ALGORITHMS; RECOVERY; SIGNALS;
D O I
10.23952/jnva.7.2023.4.09
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper discusses the k-sparse complex signal recovery from quadratic measurements via the 4-minimization model, where 0 < p < 1. We establish the 4 restricted isometry property over simultaneously low-rank and sparse matrices, which is a weaker restricted isometry property to guarantee the successful recovery in the 4 case. The main result is to demonstrate that Lp-minimization can recover complex k-sparse signals from m > k+pklog(n/k) complex Gaussian quadratic measurements with high probability. The resulting sufficient condition is met by fewer measurements for smaller p and reaches m> k when p turns to zero. Furthermore, an iteratively-reweighted algorithm is proposed. Numerical experiments also demonstrate that 4 minimization with 0 < p <1 performs better than L1 minimization.
引用
收藏
页码:607 / 626
页数:20
相关论文
共 27 条
  • [11] Sparsest solutions of underdetermined linear systems via lq-minimization for 0 &lt; q ≤ 1
    Foucart, Simon
    Lai, Ming-Jun
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2009, 26 (03) : 395 - 407
  • [12] GERCHBERG RW, 1972, OPTIK, V35, P237
  • [13] Stirling's series made easy
    Impens, C
    [J]. AMERICAN MATHEMATICAL MONTHLY, 2003, 110 (08) : 730 - 735
  • [14] Sample-Efficient Algorithms for Recovering Structured Signals From Magnitude-Only Measurements
    Jagatap, Gauri
    Hegde, Chinmay
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (07) : 4434 - 4456
  • [15] Uniform Uncertainty Principle for Bernoulli and Subgaussian Ensembles
    Mendelson, Shahar
    Pajor, Alain
    Tomczak-Jaegermann, Nicole
    [J]. CONSTRUCTIVE APPROXIMATION, 2008, 28 (03) : 277 - 289
  • [16] Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens
    Miao, JW
    Charalambous, P
    Kirz, J
    Sayre, D
    [J]. NATURE, 1999, 400 (6742) : 342 - 344
  • [17] Compressive phase retrieval
    Moravec, Matthew L.
    Romberg, Justin K.
    Baraniuk, Richard G.
    [J]. WAVELETS XII, PTS 1 AND 2, 2007, 6701
  • [18] Compressive Phase Retrieval via Generalized Approximate Message Passing
    Schniter, Philip
    Rangan, Sundeep
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (04) : 1043 - 1055
  • [19] Low-Rank Matrix Recovery With Scaled Subgradient Methods: Fast and Robust Convergence Without the Condition Number
    Tong, Tian
    Ma, Cong
    Chi, Yuejie
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 : 2396 - 2409
  • [20] Vershynin, 2010, ARXIV10113027