Compactness of Commutators for Riesz Potential on Local Morrey-type spaces.

被引:1
作者
Matin, D. T. [1 ]
Akhazhanov, T. B. [1 ]
Adilkhanov, A. [1 ]
机构
[1] LN Gumilyov Eurasian Natl Univ, Astana, Kazakhstan
来源
BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS | 2023年 / 110卷 / 02期
关键词
Compactness; Commutators; Riesz Potential; Local Morrey-type spaces; CLASSICAL OPERATORS; RECENT PROGRESS; REAL ANALYSIS; BOUNDEDNESS;
D O I
10.31489/2023M2/93-103
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper considers Morrey-type local spaces from LMwp & theta; The main work is the proof of the commutator compactness theorem for the Riesz potential [b, I & alpha;] in local Morrey-type spaces from LMp & theta;w1 to LMw2 q & theta; . We also give new sufficient conditions for the commutator to be bounded for the Riesz potential [b, I & alpha;] in local Morrey-type spaces from LMp & theta;w1 to LMw2 q & theta; . In the proof of the commutator compactness theorem for the Riesz potential, we essentially use the boundedness condition for the commutator for the Riesz potential [b, I & alpha;] in local Morrey-type spaces LMwp & theta;, and use the sufficient conditions from the theorem of precompactness of sets in local spaces of Morrey type LMwp & theta;. In the course of proving the commutator compactness theorem for the Riesz potential, we prove lemmas for the commutator ball for the Riesz potential [b, I & alpha;]. Similar results were obtained for global Morrey-type spaces GMwp & theta; and for generalized Morrey spaces Mpw.
引用
收藏
页码:93 / 103
页数:11
相关论文
共 50 条
  • [31] Riesz potential and its commutators on generalized weighted Orlicz-Morrey spaces
    Guliyev, Vagif S.
    Deringoz, Fatih
    MATHEMATISCHE NACHRICHTEN, 2022, 295 (04) : 706 - 724
  • [32] Sufficient conditions for the precompactness of sets in Local Morrey-type spaces
    Matin, D. T.
    Baituyakova, Zh Zh
    Adilkhanov, A. N.
    Bostanov, B. O.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2018, 92 (04): : 54 - 63
  • [33] COMMUTATORS OF RIESZ POTENTIAL IN THE VANISHING GENERALIZED WEIGHTED MORREY SPACES WITH VARIABLE EXPONENT
    Guliyev, Vagif S.
    Hasanov, Javanshir J.
    Badalov, Xayyam A.
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2019, 22 (01): : 331 - 351
  • [34] Characterizations for the Riesz potential and its commutators on generalized Orlicz-Morrey spaces
    Deringoz, Fatih
    Guliyev, Vagif S.
    Hasanov, Sabir G.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
  • [35] Nonhomogeneous central Morrey-type spaces in LP(.) and weak estimates for the maximal and Riesz potential operators
    Matsuoka, Katsuo
    Mizuta, Yoshihiro
    Shimomura, Tetsu
    KYOTO JOURNAL OF MATHEMATICS, 2022, 62 (01) : 133 - 150
  • [36] EMBEDDINGS BETWEEN WEIGHTED LOCAL MORREY-TYPE SPACES AND WEIGHTED LEBESGUE SPACES
    Mustafayev, R. Ch.
    Unver, T.
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2015, 9 (01): : 277 - 296
  • [37] On the Riesz Potential and Its Commutators on Generalized Orlicz-Morrey Spaces
    Guliyev, Vagif S.
    Deringoz, Fatih
    JOURNAL OF FUNCTION SPACES, 2014, 2014
  • [38] COMPACTNESS FOR COMMUTATORS OF MARCINKIEWICZ INTEGRALS IN MORREY SPACES
    Chen, Yanping
    Ding, Yong
    Wang, Xinxia
    TAIWANESE JOURNAL OF MATHEMATICS, 2011, 15 (02): : 633 - 658
  • [39] Commutators and generalized local Morrey spaces
    Guliyev, V. S.
    Omarova, M. N.
    Ragusa, M. A.
    Scapellato, A.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 457 (02) : 1388 - 1402
  • [40] Weighted inequalities for fractional integral operators and linear commutators in the Morrey-type spaces
    Hua Wang
    Journal of Inequalities and Applications, 2017