Bearing Fault Diagnosis Method Based on Deep Learning and Health State Division

被引:7
|
作者
Shi, Lin [1 ]
Su, Shaohui [1 ]
Wang, Wanqiang [1 ]
Gao, Shang [1 ]
Chu, Changyong [1 ]
机构
[1] Hangzhou Dianzi Univ, Sch Mech Engn, Hangzhou 310018, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 13期
基金
中国国家自然科学基金;
关键词
rolling bearing; fault diagnosis; health status division; deep learning; convolutional neural network;
D O I
10.3390/app13137424
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
As a key component of motion support, the rolling bearing is currently a popular research topic for accurate diagnosis of bearing faults and prediction of remaining bearing life. However, most existing methods still have difficulties in learning representative features from the raw data. In this paper, the Xi'an Jiaotong University (XJTU-SY) rolling bearing dataset is taken as the research object, and a deep learning technique is applied to carry out the bearing fault diagnosis research. The root mean square (RMS), kurtosis, and sum of frequency energy per unit acquisition period of the short-time Fourier transform are used as health factor indicators to divide the whole life cycle of bearings into two phases: the health phase and the fault phase. This division not only expands the bearing dataset but also improves the fault diagnosis efficiency. The Deep Convolutional Neural Networks with Wide First-layer Kernels (WDCNN) network model is improved by introducing multi-scale large convolutional kernels and Gate Recurrent Unit (GRU) networks. The bearing signals with classified health states are trained and tested, and the training and testing process is visualized, then finally the experimental validation is performed for four failure locations in the dataset. The experimental results show that the proposed network model has excellent fault diagnosis and noise immunity, and can achieve the diagnosis of bearing faults under complex working conditions, with greater diagnostic accuracy and efficiency.
引用
收藏
页数:24
相关论文
共 50 条
  • [41] Bearing Fault Diagnosis Based on ICEEMDAN Deep Learning Network
    Liang, Bo
    Feng, Wuwei
    PROCESSES, 2023, 11 (08)
  • [42] Rolling Bearing Fault Diagnosis Method Based on Enhanced Deep Auto-encoder Network
    Tong J.
    Luo J.
    Zheng J.
    Zhongguo Jixie Gongcheng/China Mechanical Engineering, 2021, 32 (21): : 2617 - 2624
  • [43] A novel feature adaptive extraction method based on deep learning for bearing fault diagnosis
    Zhang, Tian
    Liu, Shulin
    Wei, Yuan
    Zhang, Hongli
    MEASUREMENT, 2021, 185
  • [44] Deep Learning based End-to-End Rolling Bearing Fault Diagnosis
    Li, Yongjie
    Qiu, Bohua
    Wei, Muheng
    Sun, Wenqiushi
    Liu, Xueliang
    2019 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-QINGDAO), 2019,
  • [45] Novelty Detection and Fault Diagnosis Method for Bearing Faults Based on the Hybrid Deep Autoencoder Network
    Zhao, Yuanyuan
    Hao, Huijuan
    Chen, Yu
    Zhang, Yu
    ELECTRONICS, 2023, 12 (13)
  • [46] Current-Based Bearing Fault Diagnosis Using Deep Learning Algorithms
    Barcelos, Andre S.
    Cardoso, Antonio J. Marques
    ENERGIES, 2021, 14 (09)
  • [47] Rolling Bearing Fault Diagnosis Based on Deep Learning and Autoencoder Information Fusion
    Ma, Jianpeng
    Li, Chengwei
    Zhang, Guangzhu
    SYMMETRY-BASEL, 2022, 14 (01):
  • [48] Fault diagnosis of rolling bearing using a transfer ensemble deep reinforcement learning method
    Li, Zhenning
    Jiang, Hongkai
    Liu, Shaowei
    Wang, Ruixin
    2023 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT, ICPHM, 2023, : 205 - 211
  • [49] A Fault Diagnosis Method of Rolling Bearing Based on Attention Entropy and Adaptive Deep Kernel Extreme Learning Machine
    Wang, Weiyu
    Zhao, Xunxin
    Luo, Lijun
    Zhang, Pei
    Mo, Fan
    Chen, Fei
    Chen, Diyi
    Wu, Fengjiao
    Wang, Bin
    ENERGIES, 2022, 15 (22)
  • [50] Impact of Deep Learning Optimizers and Hyperparameter Tuning on the Performance of Bearing Fault Diagnosis
    Lee, Seongjae
    Kim, Taehyoun
    IEEE ACCESS, 2023, 11 : 55046 - 55070