ABF: A data-driven approach for algal bloom forecasting using machine intelligence and remotely sensed data series

被引:1
|
作者
Ananias, Pedro Henrique M. [1 ,2 ]
Negri, Rogerio G. [1 ,2 ]
Bressane, Adriano [1 ,3 ]
Dias, Mauricio A. [4 ]
Silva, Erivaldo A. [4 ]
Casaca, Wallace [5 ]
机构
[1] Sao Paulo State Univ UNESP, Sao Jose Dos Campos, SP, Brazil
[2] UNESP, Grad Program Nat Disasters, CEMADEN, Sao Jose Dos Campos, SP, Brazil
[3] UNESP, Civil & Environm Engn Grad Program, Bauru, SP, Brazil
[4] Sao Paulo State Univ UNESP, Presidente Prudente, SP, Brazil
[5] Sao Paulo State Univ UNESP, Sao Jose Do Rio Preto, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Forecasting; Algal bloom; Remote sensing; Machine learning;
D O I
10.1016/j.simpa.2023.100518
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper presents a fully automated framework for algal bloom forecasting in inland water by combining remote sensing data series and unsupervised machine learning concepts. In contrast to other methods in the specialized literature that usually employ pre-labeled data, the proposed approach was designed to be fully autonomous concerning pre-requisites, assuming as input only a time series of remotely sensed products to forecast algal proliferation. In more technical terms, the designed machine-intelligent methodology comprises the steps of pre-processing, feature extraction and modeling, and it learns unsupervised from past events to predict future scenarios of algal blooms, outputting algal insurgence maps.
引用
收藏
页数:3
相关论文
共 50 条
  • [41] Data-Driven Forecasting of Sunspot Cycles: Pros and Cons of a Hybrid Approach
    Qinglin Xu
    Rekha Jain
    Wei Xing
    Solar Physics, 2024, 299
  • [42] Automated Data-Driven Approach for Gap Filling in the Time Series Using Evolutionary Learning
    Sarafanov, Mikhail
    Nikitin, Nikolay O.
    Kalyuzhnaya, Anna, V
    16TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING MODELS IN INDUSTRIAL AND ENVIRONMENTAL APPLICATIONS (SOCO 2021), 2022, 1401 : 633 - 642
  • [43] Uncovering psychiatric phenotypes using unsupervised machine learning: A data-driven symptoms approach
    Hofman, Amy
    Lier, Isabelle
    Ikram, M. Arfan
    van Wingerden, Marijn
    Luik, Annemarie I.
    EUROPEAN PSYCHIATRY, 2023, 66 (01)
  • [44] Data-driven decadal climate forecasting using Wasserstein time-series generative adversarial networks
    Bouteska, Ahmed
    Seranto, Marco Lavazza
    Hajek, Petr
    Abedin, Mohammad Zoynul
    ANNALS OF OPERATIONS RESEARCH, 2023,
  • [45] Time-Series Forecasting of Seasonal Data Using Machine Learning Methods
    Kramar, Vadim
    Alchakov, Vasiliy
    ALGORITHMS, 2023, 16 (05)
  • [46] A Machine Learning Driven Approach for Forecasting Parkinson's Disease Progression Using Temporal Data
    Chowdhury, Aditya Roy
    Ahuja, Rohit
    Manroy, Angad
    DISTRIBUTED COMPUTING AND INTELLIGENT TECHNOLOGY, ICDCIT 2024, 2024, 14501 : 266 - 281
  • [47] Solar Irradiance Forecasting Using a Data-Driven Algorithm and Contextual Optimisation
    Bendiek, Paula
    Taha, Ahmad
    Abbasi, Qammer H.
    Barakat, Basel
    APPLIED SCIENCES-BASEL, 2022, 12 (01):
  • [48] Improving Forecasting Ability of GITM Using Data-Driven Model Refinement
    Ponder, Brandon M.
    Ridley, Aaron J.
    Goel, Ankit
    Bernstein, D. S.
    SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS, 2023, 21 (03):
  • [49] Data-Driven Consensus Protocol Classification Using Machine Learning
    Marcozzi, Marco
    Filatovas, Ernestas
    Stripinis, Linas
    Paulavicius, Remigijus
    MATHEMATICS, 2024, 12 (02)
  • [50] Meteorological Data-Driven Traffic Flow Forecasting Using Intelligent Algorithms
    Newbolt, Travis M.
    Mandal, Paras
    2023 IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES LATIN AMERICA, ISGT-LA, 2023, : 425 - 429