ABF: A data-driven approach for algal bloom forecasting using machine intelligence and remotely sensed data series

被引:1
|
作者
Ananias, Pedro Henrique M. [1 ,2 ]
Negri, Rogerio G. [1 ,2 ]
Bressane, Adriano [1 ,3 ]
Dias, Mauricio A. [4 ]
Silva, Erivaldo A. [4 ]
Casaca, Wallace [5 ]
机构
[1] Sao Paulo State Univ UNESP, Sao Jose Dos Campos, SP, Brazil
[2] UNESP, Grad Program Nat Disasters, CEMADEN, Sao Jose Dos Campos, SP, Brazil
[3] UNESP, Civil & Environm Engn Grad Program, Bauru, SP, Brazil
[4] Sao Paulo State Univ UNESP, Presidente Prudente, SP, Brazil
[5] Sao Paulo State Univ UNESP, Sao Jose Do Rio Preto, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Forecasting; Algal bloom; Remote sensing; Machine learning;
D O I
10.1016/j.simpa.2023.100518
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper presents a fully automated framework for algal bloom forecasting in inland water by combining remote sensing data series and unsupervised machine learning concepts. In contrast to other methods in the specialized literature that usually employ pre-labeled data, the proposed approach was designed to be fully autonomous concerning pre-requisites, assuming as input only a time series of remotely sensed products to forecast algal proliferation. In more technical terms, the designed machine-intelligent methodology comprises the steps of pre-processing, feature extraction and modeling, and it learns unsupervised from past events to predict future scenarios of algal blooms, outputting algal insurgence maps.
引用
收藏
页数:3
相关论文
共 50 条
  • [21] Indoor Temperature Forecasting in Livestock Buildings: A Data-Driven Approach
    Garcia, Carlos Alejandro Perez
    Bovo, Marco
    Torreggiani, Daniele
    Tassinari, Patrizia
    Benni, Stefano
    AGRICULTURE-BASEL, 2024, 14 (02):
  • [22] A data-driven machine learning model for forecasting delivery positions in logistics for workforce planning
    Eichenseer, Patrick
    Hans, Lukas
    Winkler, Herwig
    SUPPLY CHAIN ANALYTICS, 2025, 9
  • [23] Interval type-2 fuzzy set based time series forecasting using a data-driven partitioning approach
    Vargas Pinto, Arthur Caio
    Fernandes, Thiago Esterci
    Silva, Petronio C. L.
    Guimaraes, Frederico G.
    Wagner, Christian
    de Aguiar, Eduardo Pestana
    EVOLVING SYSTEMS, 2022, 13 (05) : 703 - 721
  • [24] Load Redistribution Attack Detection using Machine Learning: A Data-Driven Approach
    Pinceti, Andrea
    Sankar, Lalitha
    Kosut, Oliver
    2018 IEEE POWER & ENERGY SOCIETY GENERAL MEETING (PESGM), 2018,
  • [25] A Battery Health Monitoring Method Using Machine Learning: A Data-Driven Approach
    Sheikh, Shehzar Shahzad
    Anjum, Mahnoor
    Khan, Muhammad Abdullah
    Hassan, Syed Ali
    Khalid, Hassan Abdullah
    Gastli, Adel
    Ben-Brahim, Lazhar
    ENERGIES, 2020, 13 (14)
  • [26] Interval type-2 fuzzy set based time series forecasting using a data-driven partitioning approach
    Arthur Caio Vargas Pinto
    Thiago Esterci Fernandes
    Petrônio C. L. Silva
    Frederico G. Guimarães
    Christian Wagner
    Eduardo Pestana de Aguiar
    Evolving Systems, 2022, 13 : 703 - 721
  • [27] Flood Simulation with Distributed Hydrological Approach Using DEMs and Remotely Sensed Data
    Du, Jinkang
    Xie, Shunping
    Xu, Youpeng
    Xie, Hua
    Hu, Yujun
    Wang, Peifa
    Hu, Shunfu
    2006 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-8, 2006, : 1056 - +
  • [28] A South African approach for using remotely sensed data to influence policy decisions
    Petja, BM
    Annegarn, HJ
    Newby, TS
    IGARSS 2004: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM PROCEEDINGS, VOLS 1-7: SCIENCE FOR SOCIETY: EXPLORING AND MANAGING A CHANGING PLANET, 2004, : 605 - 608
  • [29] Contextual Classification Of Remotely Sensed Data Using Frequency-Based Approach
    Mustapha, M. R.
    Lim, H. S.
    MatJafri, M. Z.
    Syahreza, S.
    4TH ASIAN PHYSICS SYMPOSIUM: AN INTERNATIONAL EVENT, 2010, 1325 : 289 - 292
  • [30] Assessment of Machine Learning Algorithms for Land Cover Classification Using Remotely Sensed Data
    Park, Jeongmook
    Lee, Yongkyu
    Lee, Jungsoo
    SENSORS AND MATERIALS, 2021, 33 (11) : 3885 - 3902