ABF: A data-driven approach for algal bloom forecasting using machine intelligence and remotely sensed data series

被引:1
作者
Ananias, Pedro Henrique M. [1 ,2 ]
Negri, Rogerio G. [1 ,2 ]
Bressane, Adriano [1 ,3 ]
Dias, Mauricio A. [4 ]
Silva, Erivaldo A. [4 ]
Casaca, Wallace [5 ]
机构
[1] Sao Paulo State Univ UNESP, Sao Jose Dos Campos, SP, Brazil
[2] UNESP, Grad Program Nat Disasters, CEMADEN, Sao Jose Dos Campos, SP, Brazil
[3] UNESP, Civil & Environm Engn Grad Program, Bauru, SP, Brazil
[4] Sao Paulo State Univ UNESP, Presidente Prudente, SP, Brazil
[5] Sao Paulo State Univ UNESP, Sao Jose Do Rio Preto, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Forecasting; Algal bloom; Remote sensing; Machine learning;
D O I
10.1016/j.simpa.2023.100518
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper presents a fully automated framework for algal bloom forecasting in inland water by combining remote sensing data series and unsupervised machine learning concepts. In contrast to other methods in the specialized literature that usually employ pre-labeled data, the proposed approach was designed to be fully autonomous concerning pre-requisites, assuming as input only a time series of remotely sensed products to forecast algal proliferation. In more technical terms, the designed machine-intelligent methodology comprises the steps of pre-processing, feature extraction and modeling, and it learns unsupervised from past events to predict future scenarios of algal blooms, outputting algal insurgence maps.
引用
收藏
页数:3
相关论文
共 12 条
[1]   A Fully Unsupervised Machine Learning Framework for Algal Bloom Forecasting in Inland Waters Using MODIS Time Series and Climatic Products [J].
Ananias, Pedro Henrique M. ;
Negri, Rogerio G. ;
Dias, Mauricio A. ;
Silva, Erivaldo A. ;
Casaca, Wallace .
REMOTE SENSING, 2022, 14 (17)
[2]   Anomalous behaviour detection using one-class support vector machine and remote sensing images: a case study of algal bloom occurrence in inland waters [J].
Ananias, Pedro Henrique Moraes ;
Negri, Rogerio Galante .
INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2021, 14 (07) :921-942
[3]  
GEE-API, 2019, GOOGL EARTH ENG API
[4]  
Ketkar Nikhil, 2017, Introduction to Keras BT-Deep Learning with Python: a hands-on Introduction, P97, DOI [DOI 10.1007/978-1-4842-2766-4_7, DOI 10.1007/978-1-4842-2766-47]
[5]   Red tide detection using deep learning and high-spatial resolution optical satellite imagery [J].
Lee, Min-Sun ;
Park, Kyung-Ae ;
Chae, Jinho ;
Park, Ji-Eun ;
Lee, Joon-Soo ;
Lee, Ji-Hyun .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2020, 41 (15) :5838-5860
[6]   Advanced Machine Learning and Big Data Analytics in Remote Sensing for Natural Hazards Management [J].
Martinez-Alvarez, Francisco ;
Dieu Tien Bui .
REMOTE SENSING, 2020, 12 (02)
[7]  
McKinney Wes, 2010, P 9 PYTH SCI C, P56, DOI [DOI 10.25080/MAJORA-92BF1922-00A, 10.25080/Majora-92bf1922-00a]
[8]  
Pedregosa F, 2011, J MACH LEARN RES, V12, P2825
[9]   The NumPy Array: A Structure for Efficient Numerical Computation [J].
van der Walt, Stefan ;
Colbert, S. Chris ;
Varoquaux, Gael .
COMPUTING IN SCIENCE & ENGINEERING, 2011, 13 (02) :22-30
[10]  
van Rossum G, 2011, The python language reference manual