ABF: A data-driven approach for algal bloom forecasting using machine intelligence and remotely sensed data series

被引:1
|
作者
Ananias, Pedro Henrique M. [1 ,2 ]
Negri, Rogerio G. [1 ,2 ]
Bressane, Adriano [1 ,3 ]
Dias, Mauricio A. [4 ]
Silva, Erivaldo A. [4 ]
Casaca, Wallace [5 ]
机构
[1] Sao Paulo State Univ UNESP, Sao Jose Dos Campos, SP, Brazil
[2] UNESP, Grad Program Nat Disasters, CEMADEN, Sao Jose Dos Campos, SP, Brazil
[3] UNESP, Civil & Environm Engn Grad Program, Bauru, SP, Brazil
[4] Sao Paulo State Univ UNESP, Presidente Prudente, SP, Brazil
[5] Sao Paulo State Univ UNESP, Sao Jose Do Rio Preto, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Forecasting; Algal bloom; Remote sensing; Machine learning;
D O I
10.1016/j.simpa.2023.100518
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper presents a fully automated framework for algal bloom forecasting in inland water by combining remote sensing data series and unsupervised machine learning concepts. In contrast to other methods in the specialized literature that usually employ pre-labeled data, the proposed approach was designed to be fully autonomous concerning pre-requisites, assuming as input only a time series of remotely sensed products to forecast algal proliferation. In more technical terms, the designed machine-intelligent methodology comprises the steps of pre-processing, feature extraction and modeling, and it learns unsupervised from past events to predict future scenarios of algal blooms, outputting algal insurgence maps.
引用
收藏
页数:3
相关论文
共 50 条
  • [1] Data-Driven Load Forecasting Using Machine Learning and Meteorological Data
    Alrashidi A.
    Qamar A.M.
    Computer Systems Science and Engineering, 2023, 44 (03): : 1973 - 1988
  • [2] Data-driven approach for hydrocarbon production forecasting using machine learning techniques
    Chahar, Jaiyesh
    Verma, Jayant
    Vyas, Divyanshu
    Goyal, Mukul
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2022, 217
  • [3] FREAK WAVE FORECASTING: A DATA-DRIVEN APPROACH
    Breunung, Thomas
    Balachandran, Balakumar
    PROCEEDINGS OF ASME 2022 41ST INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE & ARCTIC ENGINEERING, OMAE2022, VOL 2, 2022,
  • [4] A data-driven approach for neonatal mortality rate forecasting
    Rodriguez, Elen
    Rodriguez, Elias
    Nascimento, Luiz
    da Silva, Aneirson
    Marins, Fernando
    5TH INTERNATIONAL CONFERENCE ON INFORMATICS & DATA-DRIVEN MEDICINE, IDDM 2022, 2022, 3302
  • [5] Modeling Dengue vector population using remotely sensed data and machine learning
    Scavuzzo, Juan M.
    Trucco, Francisco
    Espinosa, Manuel
    Tauro, Carolina B.
    Abril, Marcelo
    Scavuzzo, Carlos M.
    Frery, Alejandro C.
    ACTA TROPICA, 2018, 185 : 167 - 175
  • [6] Predicting Emotional States Using Behavioral Markers Derived From Passively Sensed Data: Data-Driven Machine Learning Approach
    Suekei, Emese
    Norbury, Agnes
    Perez-Rodriguez, M. Mercedes
    Olmos, Pablo M.
    Artes, Antonio
    JMIR MHEALTH AND UHEALTH, 2021, 9 (03):
  • [7] Using remotely sensed data to modify wind forcing in operational storm surge forecasting
    Byrne, David
    Horsburgh, Kevin
    Zachry, Brian
    Cipollini, Paolo
    NATURAL HAZARDS, 2017, 89 (01) : 275 - 293
  • [8] Data-Driven Approach for Resistivity Prediction Using Artificial Intelligence
    Abdelaal, Ahmed
    Ibrahim, Ahmed Farid
    Elkatatny, Salaheldin
    JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME, 2022, 144 (10):
  • [9] Using remotely sensed data to modify wind forcing in operational storm surge forecasting
    David Byrne
    Kevin Horsburgh
    Brian Zachry
    Paolo Cipollini
    Natural Hazards, 2017, 89 : 275 - 293
  • [10] Progress of data-driven remotely sensed retrieval methods and products on land surface evapotranspiration
    Liu M.
    Tang R.
    Li Z.
    Gao M.
    Yao Y.
    National Remote Sensing Bulletin, 2021, 25 (08) : 1517 - 1537