Assessment of gridded datasets of various near surface temperature variables over Heihe River Basin: Uncertainties, spatial heterogeneity and clear-sky bias

被引:9
作者
Xu, Shuo [1 ]
Wang, Dongdong [1 ]
Liang, Shunlin [2 ]
Liu, Yuling [3 ]
Jia, Aolin [1 ]
机构
[1] Univ Maryland, Dept Geog Sci, College Pk, MD 20742 USA
[2] Univ Hong Kong, Dept Geog, Hong Kong 999077, Peoples R China
[3] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20740 USA
基金
美国海洋和大气管理局;
关键词
Temperature; Near surface temperature; Land surface temperature; Air temperature; Soil temperature; Validation; Spatial heterogeneity; Clear -sky bias; AIR-TEMPERATURE; DATA ASSIMILATION; LAND; VALIDATION; GEOSTATIONARY; RETRIEVAL; DATABASE;
D O I
10.1016/j.jag.2023.103347
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Near-surface temperatures, such as air, land surface, and soil temperatures, play significant roles in surface ra-diation and energy balance. This study assessed nine gridded near-surface temperature products and analyzed the spatial heterogeneity and clear-sky bias of these temperature variables, using extensive measurements collected at Heihe River Basin. The MXD21 (MOD21 and MYD21) product had the lowest root mean square error (RMSE) (3.35 K) among all skin temperature products but a high percentage of missing values (48.4 %). All-weather skin temperature products had comparable accuracy for the interpolated cloudy-sky cases (RMSE 4.92 K) and observed clear-sky pixels (RMSE 3.42 K). For air temperature, AMSR2 had the lowest RMSE (2.48 K), but a high percentage of invalid data (32.5 %); and ERA5 had a worse accuracy (RMSE 3.87 K) but a high spatial resolution and gap-free data coverage. Comparing products from the same data source, air and soil temperatures had higher accuracies than skin temperature. Among the different variables of temperature, the 0 cm soil temperature and skin temperature had higher spatiotemporal heterogeneity than the air temperature and the soil temperatures at greater depths. The skin temperature, 0 cm soil temperature, and air temperature had higher clear-sky biases compared to soil temperatures.
引用
收藏
页数:10
相关论文
共 51 条
  • [1] Estimating air surface temperature in Portugal using MODIS LST data
    Benali, A.
    Carvalho, A. C.
    Nunes, J. P.
    Carvalhais, N.
    Santos, A.
    [J]. REMOTE SENSING OF ENVIRONMENT, 2012, 124 : 108 - 121
  • [2] Seasonal and synoptic variations in near-surface air temperature lapse rates in a mountainous basin
    Blandford, Troy R.
    Humes, Karen S.
    Harshburger, Brian J.
    Moore, Brandon C.
    Walden, Von P.
    Ye, Hengchun
    [J]. JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY, 2008, 47 (01) : 249 - 261
  • [3] MiRS: An All-Weather 1DVAR Satellite Data Assimilation and Retrieval System
    Boukabara, Sid-Ahmed
    Garrett, Kevin
    Chen, Wanchun
    Iturbide-Sanchez, Flavio
    Grassotti, Christopher
    Kongoli, Cezar
    Chen, Ruiyue
    Liu, Quanhua
    Yan, Banghua
    Weng, Fuzhong
    Ferraro, Ralph
    Kleespies, Thomas J.
    Meng, Huan
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (09): : 3249 - 3272
  • [4] The ERA5-Land soil temperature bias in permafrost regions
    Cao, Bin
    Gruber, Stephan
    Zheng, Donghai
    Li, Xin
    [J]. CRYOSPHERE, 2020, 14 (08) : 2581 - 2595
  • [5] Within-city spatial and temporal heterogeneity of air temperature and its relationship with land surface temperature
    Cao, Jie
    Zhou, Weiqi
    Zheng, Zhong
    Ren, Tian
    Wang, Weimin
    [J]. LANDSCAPE AND URBAN PLANNING, 2021, 206
  • [6] A spatially explicit surface urban heat island database for the United States: Characterization, uncertainties, and possible applications
    Chakraborty, T.
    Hsu, A.
    Manya, D.
    Sheriff, G.
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2020, 168 : 74 - 88
  • [7] Integrated hydrometeorological, snow and frozen-ground observations in the alpine region of the Heihe River Basin, China
    Che, Tao
    Li, Xin
    Liu, Shaomin
    Li, Hongyi
    Xu, Ziwei
    Tan, Junlei
    Zhang, Yang
    Ren, Zhiguo
    Xiao, Lin
    Deng, Jie
    Jin, Rui
    Ma, Mingguo
    Wang, Jian
    Yang, Xiaofan
    [J]. EARTH SYSTEM SCIENCE DATA, 2019, 11 (03) : 1483 - 1499
  • [8] Estimating the Optimal Broadband Emissivity Spectral Range for Calculating Surface Longwave Net Radiation
    Cheng, Jie
    Liang, Shunlin
    Yao, Yunjun
    Zhang, Xiaotong
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2013, 10 (02) : 401 - 405
  • [9] The ERA-Interim reanalysis: configuration and performance of the data assimilation system
    Dee, D. P.
    Uppala, S. M.
    Simmons, A. J.
    Berrisford, P.
    Poli, P.
    Kobayashi, S.
    Andrae, U.
    Balmaseda, M. A.
    Balsamo, G.
    Bauer, P.
    Bechtold, P.
    Beljaars, A. C. M.
    van de Berg, L.
    Bidlot, J.
    Bormann, N.
    Delsol, C.
    Dragani, R.
    Fuentes, M.
    Geer, A. J.
    Haimberger, L.
    Healy, S. B.
    Hersbach, H.
    Holm, E. V.
    Isaksen, L.
    Kallberg, P.
    Koehler, M.
    Matricardi, M.
    McNally, A. P.
    Monge-Sanz, B. M.
    Morcrette, J. -J.
    Park, B. -K.
    Peubey, C.
    de Rosnay, P.
    Tavolato, C.
    Thepaut, J. -N.
    Vitart, F.
    [J]. QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2011, 137 (656) : 553 - 597
  • [10] Satellite Microwave Retrieval of Total Precipitable Water Vapor and Surface Air Temperature Over Land From AMSR2
    Du, Jinyang
    Kimball, John S.
    Jones, Lucas A.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (05): : 2520 - 2531