Sentiment Analysis Model Using Word2vec, Bi-LSTM and Attention Mechanism

被引:5
作者
Jaca-Madariaga, M. [1 ]
Zarrabeitia-Bilbao, E. [1 ]
Rio-Belver, R. M. [2 ]
Moens, M. F. [3 ]
机构
[1] Univ Basque Country UPV EHU, Ind Org & Management Engn Dept, Fac Engn Bilbao, Bilbao 48013, Spain
[2] Univ Basque Country UPV EHU, Ind Org & Management Engn Dept, Fac Engn Vitoria Gasteiz, Vitoria 01006, Spain
[3] Katholieke Univ Leuven, Dept Comp Sci, B-3001 Heverlee, Belgium
来源
IOT AND DATA SCIENCE IN ENGINEERING MANAGEMENT | 2023年 / 160卷
关键词
Sentiment analysis; Text mining; Twitter; Word2vec; Bidirectional LSTM; Attention mechanism;
D O I
10.1007/978-3-031-27915-7_43
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Within the interdisciplinary field of data science, this paper proposes a sentiment classification model applied to text, specifically tweets, using neural networks. To do that, after gathering and pre-processing the data, firstly, word2vec model is used to convert tweets into word vectors. Secondly, Bi-LSTM neural network is used to capture the semantic meaning of the text. Thirdly, attention mechanism is added to extract the most relevant words. Fourthly, a sigmoid function is used to achieve the emotion classification. Thus, after crossing each layer of the neural network, the model finally returns the result of the binary classification to detect the emotion of the social media text data. The presented model gives an accuracy of 84.12%, surpassing other existing models for this purpose.
引用
收藏
页码:239 / 244
页数:6
相关论文
共 14 条
[1]  
[Anonymous], SENTIMENT140 A TWITT
[2]  
[Anonymous], PROJECT JUPYTER
[3]  
[Anonymous], SENTIMENT140 DATASET
[4]  
Chandra S., 2021, ISIC 2021 INT SEMANT
[5]   Genetic Algorithm-Optimized Long Short-Term Memory Network for Stock Market Prediction [J].
Chung, Hyejung ;
Shin, Kyung-shik .
SUSTAINABILITY, 2018, 10 (10)
[6]   Deep Attentional Bidirectional LSTM for Arabic Sentiment Analysis In Twitter [J].
Elfaik, Hanane ;
Nfaoui, El Habib .
2021 1ST INTERNATIONAL CONFERENCE ON EMERGING SMART TECHNOLOGIES AND APPLICATIONS, ESMARTA 2021, 2021, :147-154
[7]   Decision support from financial disclosures with deep neural networks and transfer learning [J].
Kraus, Mathias ;
Feuerriegel, Stefan .
DECISION SUPPORT SYSTEMS, 2017, 104 :38-48
[8]  
Li JH, 2017, I C SERV SYST SERV M
[9]  
Mikolov T., 2013, DISTRIBUTED REPRESEN, DOI [10.48550/arXiv.1301.3781, DOI 10.48550/ARXIV.1301.3781]
[10]  
Nasukawa T., 2003, K CAP 03 P 2 INT C K, P70, DOI [10.1145/945645.945658, DOI 10.1145/945645.945658]