INEQUALITIES IN TIME-FREQUENCY ANALYSIS

被引:0
作者
Ghobber, Saifallah [1 ]
Omri, Slim [2 ]
Oueslati, Ons [2 ]
机构
[1] King Faisal Univ, Stat Coll Sci, Dept Math, POB 400, Al Hasa 31982, Saudi Arabia
[2] Tunis Univ Tunis El Manar, Fac Sci, Tunis 2092, Tunisia
来源
MATHEMATICAL INEQUALITIES & APPLICATIONS | 2023年 / 26卷 / 02期
关键词
Time-frequency analysis; short-time Fourier transform; Nash's inequality; Pitt's inequality; Beckner's inequality; Sobolev inequality; uncertainty principles; UNCERTAINTY PRINCIPLES; PITTS INEQUALITY; FOURIER-TRANSFORM;
D O I
10.7153/mia-2023-26-25
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Different types of Nash inequaliy, Sobolev inequality, Pitt inequality, logarithmic Sobolev inequality and Gross inequality are proved for the short time Fourier transform. Also, several formulations of Beckner's logarithmic uncertainty principle are established for the same transform.
引用
收藏
页码:377 / 400
页数:24
相关论文
共 33 条
[21]   Time-frequency localization for the short time Fourier transform [J].
Lamouchi, H. ;
Omri, S. .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2016, 27 (01) :43-54
[22]   INTEGRAL BOUNDS FOR RADAR AMBIGUITY FUNCTIONS AND WIGNER DISTRIBUTIONS [J].
LIEB, EH .
JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (03) :594-599
[23]  
Logvinenko Vladimir N., 1974, Teor. Funk. Anal. i Prilozen., V20, P175
[24]   A new class of uncertainty principles for the Gabor transform [J].
Mejjaoli, Hatem ;
Shah, Firdous A. .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2022, 19 (07)
[25]   Uncertainty principles associated with the directional short-time Fourier transform [J].
Mejjaoli, Hatem ;
Shah, Firdous A. .
JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (06)
[26]   CONTINUITY OF SOLUTIONS OF PARABOLIC AND ELLIPTIC EQUATIONS [J].
NASH, J .
AMERICAN JOURNAL OF MATHEMATICS, 1958, 80 (04) :931-954
[27]  
Nazarov Fedor L., 1993, Algebra Anal., V5, P3
[28]   Logarithmic uncertainty principle for the Hankel transform [J].
Omri, S. .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2011, 22 (09) :655-670
[29]  
Saitoh S., 1988, THEORY REPRODUCING K
[30]  
Sobolev S.L., 1963, TRANSL AM MATH SOC, V34, P39