INEQUALITIES IN TIME-FREQUENCY ANALYSIS

被引:0
作者
Ghobber, Saifallah [1 ]
Omri, Slim [2 ]
Oueslati, Ons [2 ]
机构
[1] King Faisal Univ, Stat Coll Sci, Dept Math, POB 400, Al Hasa 31982, Saudi Arabia
[2] Tunis Univ Tunis El Manar, Fac Sci, Tunis 2092, Tunisia
来源
MATHEMATICAL INEQUALITIES & APPLICATIONS | 2023年 / 26卷 / 02期
关键词
Time-frequency analysis; short-time Fourier transform; Nash's inequality; Pitt's inequality; Beckner's inequality; Sobolev inequality; uncertainty principles; UNCERTAINTY PRINCIPLES; PITTS INEQUALITY; FOURIER-TRANSFORM;
D O I
10.7153/mia-2023-26-25
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Different types of Nash inequaliy, Sobolev inequality, Pitt inequality, logarithmic Sobolev inequality and Gross inequality are proved for the short time Fourier transform. Also, several formulations of Beckner's logarithmic uncertainty principle are established for the same transform.
引用
收藏
页码:377 / 400
页数:24
相关论文
共 33 条
[1]   SUPPORT PROPERTIES OF LP-FUNCTIONS AND THEIR FOURIER-TRANSFORMS [J].
AMREIN, WO ;
BERTHIER, AM .
JOURNAL OF FUNCTIONAL ANALYSIS, 1977, 24 (03) :258-267
[2]  
[Anonymous], 2008, Classical Fourier Analysis
[3]   On sharp Sobolev embedding and the logarithmic Sobolev inequality [J].
Beckner, W ;
Pearson, M .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1998, 30 :80-84
[4]   PITTS INEQUALITY AND THE UNCERTAINTY PRINCIPLE [J].
BECKNER, W .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 123 (06) :1897-1905
[5]  
Beckner W, 2008, P AM MATH SOC, V136, P1871
[7]  
Bonami A, 2003, REV MAT IBEROAM, V19, P23
[8]  
Feichtinger H. G., 2003, Advances in Gabor Analysis
[9]   Annihilating sets for the short time Fourier transform [J].
Fernandez, Carmen ;
Galbis, Antonio .
ADVANCES IN MATHEMATICS, 2010, 224 (05) :1904-1926
[10]   The uncertainty principle: A mathematical survey [J].
Folland, GB ;
Sitaram, A .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 1997, 3 (03) :207-238