Experimental investigation of an asymmetric compound parabolic concentrator-based direct absorption solar collector using plasmonic nanofluids

被引:10
|
作者
Singh, Parminder [1 ]
Kumar, Sanjay [1 ]
Chander, Nikhil [2 ]
Bagha, Ashok Kumar [3 ]
机构
[1] Dr BR Ambedkar Natl Inst Technol, Dept Mech Engn, Renewable & Energy Efficiency Res Grp, Jalandhar 144011, Punjab, India
[2] Indian Inst Technol Bhilai, Dept Elect Engn, GEC Campus, Raipur 492015, Chhattisgarh, India
[3] Dr BR Ambedkar Natl Inst Technol, Dept Mech Engn, Jalandhar 144011, Punjab, India
关键词
Direct absorption; Plasmonic nanofluids; Asymmetric compound parabolic collector; Performance enhancement; PHOTOTHERMAL CONVERSION; TROUGH COLLECTOR; THERMAL PERFORMANCE; GOLD NANOPARTICLES; ENERGY; DESIGN; OPTIMIZATION; ENHANCEMENT; INTEGRATION; PRINCIPLES;
D O I
10.1007/s11356-023-26747-2
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Plasmonic nanofluid-based direct absorption solar collector (DASC) systems have shown a better perspective over surface-based solar thermal collectors. These nanofluids demonstrated high thermal performance in photo-thermal conversion efficiency even at minute concentration compared to other tested nanofluids. However, very few studies have been reported so far with real-time outdoor experiments to show the opportunities and challenges in the practical applications of concentrating DASC systems. For the work presented here, an asymmetric compound parabolic concentrator (ACPC)-based DASC system has been designed, fabricated, and tested using mono-spherical gold and silver nanoparticle-based plasmonic nanofluids over several clear sky days at Jalandhar city (31.32 degrees N, 75.57 degrees E), India. The optical and morphological properties of synthesized nanoparticles were studied using UV-Vis spectrophotometry and High-resolution transmission electron microscopy (HR-TEM). Photo-thermal conversion tests were conducted using different working fluids and compared with a flat DASC system under similar operating conditions. The experimental results revealed that ACPC-based DASC system reached a maximum thermal efficiency of around 70% using plasmonic nanofluids which was approximately 28% higher than a flat DASC system with water as the working fluid. The stability analysis showed that plasmonic nanofluids are capable of retaining their optical properties even after several hours of sun exposure. The present study highlights the use of plasmonic nanostructures for achieving high photo-thermal conversion efficiency in concentrating DASC systems.
引用
收藏
页码:60383 / 60398
页数:16
相关论文
共 50 条
  • [1] Experimental investigation of an asymmetric compound parabolic concentrator–based direct absorption solar collector using plasmonic nanofluids
    Parminder Singh
    Sanjay Kumar
    Nikhil Chander
    Ashok Kumar Bagha
    Environmental Science and Pollution Research, 2023, 30 : 60383 - 60398
  • [2] Analysis of a New Compound Parabolic Concentrator-Based Solar Collector Designed for Methanol Reforming
    Gu, Xiaoguang
    Taylor, Robert A.
    Rosengarten, Gary
    JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 2014, 136 (04):
  • [3] Experimental investigation of thermal performance for direct absorption solar parabolic trough collector (DASPTC) based on binary nanofluids
    Menbari, Amir
    Alemrajabi, Ali Akbar
    Rezaei, Amin
    EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2017, 80 : 218 - 227
  • [4] Numerical and experimental investigation on a new type of compound parabolic concentrator solar collector
    Zheng, Wandong
    Yang, Lin
    Zhang, Huan
    You, Shijun
    Zhu, Chunguang
    ENERGY CONVERSION AND MANAGEMENT, 2016, 129 : 11 - 22
  • [5] Performance analysis of a direct-absorption parabolic-trough solar collector using plasmonic nanofluids
    Qin, Caiyan
    Kim, Joong Bae
    Lee, Bong Jae
    RENEWABLE ENERGY, 2019, 143 : 24 - 33
  • [6] Experimental investigation of a solar collector integrated with a pulsating heat pipe and a compound parabolic concentrator
    Xu, Rong Ji
    Zhang, Xiao Hui
    Wang, Rui Xiang
    Xu, Shu Hui
    Wang, Hua Sheng
    ENERGY CONVERSION AND MANAGEMENT, 2017, 148 : 68 - 77
  • [7] Numerical and experimental investigation of a compound parabolic concentrator-capillary tube solar collector
    Xu, Rong Ji
    Zhao, Yuan Qiang
    Chen, Hao
    Wu, Qing Ping
    Yang, Li Wei
    Wang, Hua Sheng
    ENERGY CONVERSION AND MANAGEMENT, 2020, 204
  • [8] Optimization of a direct absorption solar collector with blended plasmonic nanofluids
    Qin, Caiyan
    Kang, Kyeonghwan
    Lee, Ikjin
    Lee, Bong Jae
    SOLAR ENERGY, 2017, 150 : 512 - 520
  • [9] Experimental and numerical study of stable TiN plasmonic nanofluids for direct absorption parabolic trough collector
    Chen, Zhuo
    Han, Xinyue
    Wang, Lu
    Zheng, Dengming
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2025, 47 (04)
  • [10] EXPERIMENTAL INVESTIGATION ON SOLAR THERMAL PROPERTIES OF MAGNETIC NANOFLUIDS FOR DIRECT ABSORPTION SOLAR COLLECTOR
    He, Qinbo
    Yan, Geni
    Wang, shuangfeng
    PROCEEDINGS OF THE ASME 5TH INTERNATIONAL CONFERENCE ON MICRO/NANOSCALE HEAT AND MASS TRANSFER, 2016, VOL 1, 2016,