A Novel Fault Diagnosis Method of Rolling Bearings Combining Convolutional Neural Network and Transformer

被引:16
作者
Liu, Wenkai [1 ,2 ]
Zhang, Zhigang [1 ,2 ]
Zhang, Jiarui [1 ,2 ]
Huang, Haixiang [1 ,2 ]
Zhang, Guocheng [1 ,2 ]
Peng, Mingda [1 ,2 ]
机构
[1] South China Agr Univ, Coll Engn, Guangzhou 510642, Peoples R China
[2] South China Agr Univ, Minist Educ China Key Technol Agr Machine & Equipm, Key Lab, Guangzhou 510642, Peoples R China
关键词
intelligent fault diagnosis; deep learning; transformer; convolutional neural networks; rolling bearings; ELEMENT BEARINGS;
D O I
10.3390/electronics12081838
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Efficient and accurate fault diagnosis plays an essential role in the safe operation of machinery. In respect of fault diagnosis, various data-driven methods based on deep learning have attracted widespread attention for research in recent years. Considering the limitations of feature representation in convolutional structures for fault diagnosis, and the demanding requirements on the quality of data for Transformer structures, an intelligent method of fault diagnosis is proposed in the present study for bearings, namely Efficient Convolutional Transformer (ECTN). Firstly, the time-frequency representation is achieved by means of short-time Fourier transform for the original signal. Secondly, the low-level local features are extracted using an efficient convolution module. Then, the global information is extracted through transformer. Finally, the results of fault diagnosis are obtained by the classifier. Moreover, experiments are conducted on two different bearing datasets to obtain the experimental results showing that the proposed method is effective in combining the advantages of CNN and transformer. In comparison with other single-structure methods of fault diagnosis, the method proposed in this study produces a better diagnostic performance in the context of limited data volume, strong noise, and variable operating conditions.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Fault diagnosis of aerospace rolling bearings based on improved wavelet-neural network
    Jin Xiangyang
    Li Zhang
    Yu Guangbin
    PROCEEDINGS OF THE 26TH CHINESE CONTROL CONFERENCE, VOL 5, 2007, : 525 - +
  • [42] Dictionary domain adaptation transformer for cross-machine fault diagnosis of rolling bearings
    Cui, Lingli
    Wang, Gang
    Liu, Dongdong
    Pan, Xin
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 138
  • [43] Research on digital twin-assisted dual-channel parallel convolutional neural network-transformer rolling bearing fault diagnosis method
    Wang, Denglong
    Li, Yonghua
    Lu, Chong
    Men, Zhihui
    Zhao, Xing
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART B-JOURNAL OF ENGINEERING MANUFACTURE, 2024,
  • [44] Fault Diagnosis of Rolling Bearings Based on the Improved Symmetrized Dot Pattern Enhanced Convolutional Neural Networks
    Liu, Xiaoping
    Xia, Lijian
    Shi, Jian
    Zhang, Lijie
    Wang, Shaoping
    JOURNAL OF VIBRATION ENGINEERING & TECHNOLOGIES, 2024, 12 (02) : 1897 - 1908
  • [45] A multi-fault diagnosis method for rolling bearings
    Zhang, Kai
    Zhu, Eryu
    Zhang, Yimin
    Gao, Shuzhi
    Tang, Meng
    Huang, Qiujun
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (11) : 8413 - 8426
  • [46] Fault Diagnosis of Rolling Bearings Based on the Improved Symmetrized Dot Pattern Enhanced Convolutional Neural Networks
    Xiaoping Liu
    Lijian Xia
    Jian Shi
    Lijie Zhang
    Shaoping Wang
    Journal of Vibration Engineering & Technologies, 2024, 12 : 1897 - 1908
  • [47] An improved EWT method for fault diagnosis of rolling bearings
    Sheng, Jiajiu
    Chen, Guo
    Kang, Yuxiang
    He, Zhiyuan
    Wang, Hao
    Wei, Xunkai
    Liu, Chuanyu
    Hangkong Dongli Xuebao/Journal of Aerospace Power, 2024, 39 (09):
  • [48] Investigation into the fault diagnosis of rolling bearings based on neural networks
    Zhu, LB
    Yan, XZ
    Xu, FY
    CONDITION MONITORING '97, 1997, : 358 - 360
  • [49] Fault Diagnosis of Rolling Bearings Based on a Residual Dilated Pyramid Network and Full Convolutional Denoising Autoencoder
    Shi, Hongmei
    Chen, Jingcheng
    Si, Jin
    Zheng, Changchang
    SENSORS, 2020, 20 (20) : 1 - 25
  • [50] VKCNN: An interpretable variational kernel convolutional neural network for rolling bearing fault diagnosis
    Chen, Guangyi
    Tang, Gang
    Zhu, Zhixiao
    ADVANCED ENGINEERING INFORMATICS, 2024, 62