Clinical impact of artificial intelligence-based solutions on imaging of the pancreas and liver

被引:10
|
作者
Berbis, M. Alvaro [1 ,2 ]
Paulano Godino, Felix [3 ]
Royuela del Val, Javier
Alcala Mata, Lidia [3 ]
Luna, Antonio [3 ]
机构
[1] San Juan De Dios Hosp, HT Med, Dept Radiol, Cordoba 14960, Spain
[2] Autonomous Univ Madrid, Fac Med, Madrid 28049, Spain
[3] Clin Nieves, Dept Radiol, HT Med, Jaen 23007, Spain
关键词
Artificial intelligence; Machine learning; Deep learning; Imaging; Liver; Pancreas; COMPUTER-AIDED DIAGNOSIS; HEPATOCELLULAR-CARCINOMA; NEURAL-NETWORK; SEGMENTATION; CT; TOMOGRAPHY; PREDICTION; LOCALIZATION; REGISTRATION; RECURRENCE;
D O I
10.3748/wjg.v29.i9.1427
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
Artificial intelligence (AI) has experienced substantial progress over the last ten years in many fields of application, including healthcare. In hepatology and pancreatology, major attention to date has been paid to its application to the assisted or even automated interpretation of radiological images, where AI can generate accurate and reproducible imaging diagnosis, reducing the physicians' workload. AI can provide automatic or semi-automatic segmentation and registration of the liver and pancreatic glands and lesions. Furthermore, using radiomics, AI can introduce new quantitative information which is not visible to the human eye to radiological reports. AI has been applied in the detection and characterization of focal lesions and diffuse diseases of the liver and pancreas, such as neoplasms, chronic hepatic disease, or acute or chronic pancreatitis, among others. These solutions have been applied to different imaging techniques commonly used to diagnose liver and pancreatic diseases, such as ultrasound, endoscopic ultrasonography, computerized tomography (CT), magnetic resonance imaging, and positron emission tomography/CT. However, AI is also applied in this context to many other relevant steps involved in a comprehensive clinical scenario to manage a gastroenterological patient. AI can also be applied to choose the most convenient test prescription, to improve image quality or accelerate its acquisition, and to predict patient prognosis and treatment response. In this review, we summarize the current evidence on the application of AI to hepatic and pancreatic radiology, not only in regard to the interpretation of images, but also to all the steps involved in the radiological workflow in a broader sense. Lastly, we discuss the challenges and future directions of the clinical application of AI methods.
引用
收藏
页码:1427 / 1445
页数:19
相关论文
共 50 条
  • [1] Artificial intelligence in medical imaging of the liver
    Zhou, Li-Qiang
    Wang, Jia-Yu
    Yu, Song-Yuan
    Wu, Ge-Ge
    Wei, Qi
    Deng, You-Bin
    Wu, Xing-Long
    Cui, Xin-Wu
    Dietrich, Christoph F.
    WORLD JOURNAL OF GASTROENTEROLOGY, 2019, 25 (06) : 672 - 682
  • [2] Artificial Intelligence-Based Opportunities in Liver Pathology-A Systematic Review
    Allaume, Pierre
    Rabilloud, Noemie
    Turlin, Bruno
    Bardou-Jacquet, Edouard
    Loreal, Olivier
    Calderaro, Julien
    Khene, Zine-Eddine
    Acosta, Oscar
    De Crevoisier, Renaud
    Rioux-Leclercq, Nathalie
    Pecot, Thierry
    Kammerer-Jacquet, Solene-Florence
    DIAGNOSTICS, 2023, 13 (10)
  • [3] Conventional and artificial intelligence-based imaging for biomarker discovery in chronic liver disease
    Dana, Jeremy
    Venkatasamy, Aina
    Saviano, Antonio
    Lupberger, Joachim
    Hoshida, Yujin
    Vilgrain, Valerie
    Nahon, Pierre
    Reinhold, Caroline
    Gallix, Benoit
    Baumert, Thomas F.
    HEPATOLOGY INTERNATIONAL, 2022, 16 (03) : 509 - 522
  • [4] Artificial intelligence-based solutions for climate change: a review
    Chen, Lin
    Chen, Zhonghao
    Zhang, Yubing
    Liu, Yunfei
    Osman, Ahmed I.
    Farghali, Mohamed
    Hua, Jianmin
    Al-Fatesh, Ahmed
    Ihara, Ikko
    Rooney, David W.
    Yap, Pow-Seng
    ENVIRONMENTAL CHEMISTRY LETTERS, 2023, 21 (05) : 2525 - 2557
  • [5] Artificial intelligence in medical imaging of the liver
    Li-Qiang Zhou
    Jia-Yu Wang
    Song-Yuan Yu
    Ge-Ge Wu
    Qi Wei
    You-Bin Deng
    Xing-Long Wu
    Xin-Wu Cui
    Christoph F Dietrich
    World Journal of Gastroenterology, 2019, (06) : 672 - 682
  • [6] Artificial intelligence in liver imaging: methods and applications
    Zhang, Peng
    Gao, Chaofei
    Huang, Yifei
    Chen, Xiangyi
    Pan, Zhuoshi
    Wang, Lan
    Dong, Di
    Li, Shao
    Qi, Xiaolong
    HEPATOLOGY INTERNATIONAL, 2024, 18 (02) : 422 - 434
  • [7] Clinical applications of artificial intelligence in liver imaging
    Yamada, Akira
    Kamagata, Koji
    Hirata, Kenji
    Ito, Rintaro
    Nakaura, Takeshi
    Ueda, Daiju
    Fujita, Shohei
    Fushimi, Yasutaka
    Fujima, Noriyuki
    Matsui, Yusuke
    Tatsugami, Fuminari
    Nozaki, Taiki
    Fujioka, Tomoyuki
    Yanagawa, Masahiro
    Tsuboyama, Takahiro
    Kawamura, Mariko
    Naganawa, Shinji
    RADIOLOGIA MEDICA, 2023, 128 (06): : 655 - 667
  • [8] Conventional and artificial intelligence-based imaging for biomarker discovery in chronic liver disease
    Jérémy Dana
    Aïna Venkatasamy
    Antonio Saviano
    Joachim Lupberger
    Yujin Hoshida
    Valérie Vilgrain
    Pierre Nahon
    Caroline Reinhold
    Benoit Gallix
    Thomas F. Baumert
    Hepatology International, 2022, 16 : 509 - 522
  • [9] Artificial intelligence-based classification of echocardiographic views
    Naser, Jwan A.
    Lee, Eunjung
    Pislaru, Sorin, V
    Tsaban, Gal
    Malins, Jeffrey G.
    Jackson, John, I
    Anisuzzaman, D. M.
    Rostami, Behrouz
    Lopez-Jimenez, Francisco
    Friedman, Paul A.
    Kane, Garvan C.
    Pellikka, Patricia A.
    Attia, Zachi, I
    EUROPEAN HEART JOURNAL - DIGITAL HEALTH, 2024, 5 (03): : 260 - 269
  • [10] Toward High-Throughput Artificial Intelligence-Based Segmentation in Oncological PET Imaging
    Yousefirizi, Fereshteh
    Jha, Abhinav K.
    Brosch-Lenz, Julia
    Saboury, Babak
    Rahmim, Arman
    PET CLINICS, 2021, 16 (04) : 577 - 596