The fractional smoothness of integral functionals driven by Brownian motion

被引:0
作者
Xu, Xiaoyan [1 ]
Yu, Xianye [2 ]
机构
[1] Sun Yat Sen Univ, Sch Math, Guangzhou 510275, Guangdong, Peoples R China
[2] Zhejiang Gongshang Univ, Sch Stat & Math, Hangzhou 310018, Zhejiang, Peoples R China
基金
中国博士后科学基金;
关键词
Smoothness; Malliavin calculus; Brownian local time; Cauchy?s principal value; Marchaud fractional derivative; TIMES;
D O I
10.1016/j.spl.2022.109717
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we study the fractional smoothness of integral functionals driven by Brownian motion. By using Yamada identities, we also obtain the fractional smoothness of Hilbert transform and fractional derivative with respect to Brownian local time, which recovers the results in Eddahbi et al. (2000).(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 16 条
  • [1] Smoothness of local times of semimartingales
    Airault, H
    Ren, JG
    Zhang, XC
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (08): : 719 - 724
  • [2] Smoothness of stopping times of diffusion processes
    Airault, H
    Malliavin, P
    Ren, JG
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1999, 78 (10): : 1069 - 1091
  • [3] Eddahbi M., 2000, PREPRINT
  • [4] DECOMPOSITION OF ADDITIVE FUNCTIONALS OF FINITE-ENERGY
    FUKUSHIMA, M
    [J]. NAGOYA MATHEMATICAL JOURNAL, 1979, 74 (JUL) : 137 - 168
  • [5] Decoupling on the Wiener Space, Related Besov Spaces, and Applications to BSDEs
    Geiss, Stefan
    Ylinen, Juha
    [J]. MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 272 (1335) : 1 - +
  • [6] Malliavin P, 1997, STOCHASTIC ANAL
  • [7] NUALART D, 1992, PUBL MAT, V36, P827, DOI DOI 10.5565/PUBLMAT_362B92_07
  • [8] Nualart D., 2006, MALLIAVIN CALCULUS R
  • [9] Nualart D., 1992, POTENTIAL ANAL, V1, P257
  • [10] Revuz Daniel, 2013, Continuous Martingales and Brownian Motion, V293