Optimization of piezoelectric polymer composites and 3D printing parameters for flexible tactile sensors

被引:33
|
作者
Chang, Sang-Mi [1 ,2 ]
Hur, Sunghoon [2 ]
Park, Jiwon [2 ]
Lee, Dong-Gyu [2 ,3 ]
Shin, Joonchul [2 ]
Kim, Hyun Soo [2 ,4 ]
Eun, Sung [5 ]
Baik, Jeong Min [2 ,6 ,8 ]
Kim, Miso [6 ,7 ]
Song, Hyun-Cheol [2 ,6 ,8 ]
Kang, Chong-Yun [1 ,2 ]
机构
[1] Korea Univ, KU KIST Grad Sch Converging Sci & Technol, 145 Anam Ro, Seoul 02841, South Korea
[2] Korea Inst Sci & Technol KIST, Elect Mat Res Ctr, Seoul 02792, South Korea
[3] Korea Univ, Dept Mat Sci & Engn, Seoul 02841, South Korea
[4] Inha Univ, Dept Phys, Incheon 22212, South Korea
[5] Sungkyunkwan Univ, Sch Chem Engn, Suwon 16419, South Korea
[6] Sungkyunkwan Univ, Sch Adv Mat Sci & Engn, Suwon 16419, South Korea
[7] Sungkyunkwan Univ SKKU, SKKU Inst Energy Sci & Technol SIEST, Suwon 16419, South Korea
[8] Sungkyunkwan Univ SKKU, KIST SKKU Carbon Neutral Res Ctr, Suwon 16419, South Korea
基金
新加坡国家研究基金会;
关键词
3D printing; Photopolymerization; Piezoelectric polymer composites; Flexible tactile sensor; Ceramics; SUSPENSIONS; EXTRUSION;
D O I
10.1016/j.addma.2023.103470
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Optimization of the formulation and processability of 3D-printable ceramic polymer composites offers a solution to piezoelectric materials with high printability and piezoelectric responses. Our approach is based on both 3D-printable piezoelectric composite formulation and auxetic structural design. The optimal formulation exhibited strong interfacial adhesion, high dispersion stability, low viscosity, and a smooth surface, resulting in a high piezoelectricity. In addition, processing parameters, such as the intensity and application time of the UV laser, were optimized for processability. The simulated structures were designed to further enhance the piezoelectric response, and several auxetic structures were compared. A printed piezoelectric composite with an auxetic structure, including a functionalized piezoelectric ceramic powder and a dispersant, showed good flexibility, a high piezoelectric coefficient (d33), and an increased piezoelectric voltage output that was approximately three times larger than that of a typical flat structure. The proposed sensor based on the 3D-printed piezoelectric composite with the auxetic structure exhibited a high open-circuit voltage and can be used as a high-performance tactile position sensor. This work demonstrates that a 3D-printed piezoelectric composite can realize flexible and complicated structures with a high piezoelectric response and printability to enable flexible self-powered elec-tronics and sensors.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Polymer Composites for 3D Printing of Functional Sensors and Transducers
    Leigh, S. J.
    2016 IEEE SENSORS, 2016,
  • [2] Conductive Polymer Composites Based Flexible Strain Sensors by 3D Printing: A Mini-Review
    Liu, Libing
    Xiang, Dong
    Wu, Yuanpeng
    Zhou, Zuoxin
    Li, Hui
    Zhao, Chunxia
    Li, Yuntao
    FRONTIERS IN MATERIALS, 2021, 8
  • [3] 3D Optical Printing of Piezoelectric Nanoparticle - Polymer Composite Materials
    Kim, Kanguk
    Zhu, Wei
    Qu, Xin
    Aaronson, Chase
    McCall, William R.
    Chen, Shaochen
    Sirbuly, Donald J.
    ACS NANO, 2014, 8 (10) : 9799 - 9806
  • [4] 3D Printing Technologies for Flexible Tactile Sensors toward Wearable Electronics and Electronic Skin
    Liu, Changyong
    Huang, Ninggui
    Xu, Feng
    Tong, Junda
    Chen, Zhangwei
    Gui, Xuchun
    Fu, Yuelong
    Lao, Changshi
    POLYMERS, 2018, 10 (06)
  • [5] 3D printing of polymer composites to fabricate wearable sensors: A comprehensive review
    Osman, Amr
    Lu, Jian
    MATERIALS SCIENCE & ENGINEERING R-REPORTS, 2023, 154
  • [6] 3D Printing and Biomedical Applications of Piezoelectric Composites: A Critical Review
    Li, Suyun
    Shan, Yanbo
    Chen, Jingyi
    Chen, Xiaotong
    Shi, Zengqin
    Zhao, Lisheng
    He, Rujie
    Li, Ying
    ADVANCED MATERIALS TECHNOLOGIES, 2025, 10 (05):
  • [7] Combined 3D Printing Technologies and Material for Fabrication of Tactile Sensors
    Vatani, Morteza
    Lu, Yanfeng
    Engeberg, Erik D.
    Choi, Jae-Won
    INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING, 2015, 16 (07) : 1375 - 1383
  • [8] Combined 3D printing technologies and material for fabrication of tactile sensors
    Morteza Vatani
    Yanfeng Lu
    Erik D. Engeberg
    Jae-Won Choi
    International Journal of Precision Engineering and Manufacturing, 2015, 16 : 1375 - 1383
  • [9] 3D printing of flexible piezoelectric composite with integrated sensing and actuation applications
    Li, Jiang
    Zhang, Yan
    Yan, Mingyang
    Zhong, Chao
    Zhao, Lianzhong
    Zhai, Di
    Luo, Hang
    Yuan, Xi
    Zhang, Dou
    ADVANCED POWDER MATERIALS, 2024, 3 (05):
  • [10] Photocurable Carbon Nanotube/Polymer Nanocomposite for the 3D Printing of Flexible Capacitive Pressure Sensors
    Li, Jia-Wun
    Chen, Ho-Fu
    Huang, Peng-Han
    Kuo, Chung-Feng Jeffrey
    Cheng, Chih-Chia
    Chiu, Chih-Wei
    POLYMERS, 2023, 15 (24)