Suppression of Dehydrofluorination Reactions of a Li0.33La0.557TiO3-Nanofiber-Dispersed Poly(vinylidene fluoride- hexafluoropropylene) Electrolyte for Quasi-Solid-State Lithium Metal Batteries by a Fluorine-Rich Succinonitrile Interlayer

被引:13
作者
Rath, Purna Chandra [1 ]
Liu, Ming-Song [2 ]
Lo, Shih-Ting [2 ]
Dhaka, Rajendra S. [3 ]
Bresser, Dominic [4 ,5 ]
Yang, Chun-Chen [6 ]
Lee, Sheng-Wei [2 ]
Chang, Jeng-Kuei [1 ,7 ]
机构
[1] Natl Yang Ming Chiao Tung Univ, Dept Mat Sci & Engn, Hsinchu 30010, Taiwan
[2] Natl Cent Univ, Inst Mat Sci & Engn, Taoyuan 32001, Taiwan
[3] Indian Inst Technol Delhi, Dept Phys, New Delhi 110016, India
[4] Helmholtz Inst Ulm HIU, D-89081 Ulm, Germany
[5] Karlsruhe Inst Technol KIT, D-76021 Karlsruhe, Germany
[6] Ming Chi Univ Technol, Battery Res Ctr Green Energy, New Taipei City 243, Taiwan
[7] Chung Yuan Christian Univ, Dept Chem Engn, Taoyuan 32023, Taiwan
关键词
electrospinning; morphology effects; composite solid electrolyte; interface modification layer; polymer decomposition; COMPOSITE POLYMER ELECTROLYTES; CONDUCTIVITY ENHANCEMENT; GROWTH; MECHANISMS; MEMBRANE; DENDRITE; SAFETY;
D O I
10.1021/acsami.2c22268
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Solid-state lithium-metal batteries have great potential to simultaneously achieve high safety and high energy density for energy storage. However, the low ionic conductivity of the solid electrolyte and large electrode/electrolyte interfacial impedance are bottlenecks. A composite solid electrolyte (CSE) that integrates electrospun Li0.33La0.557TiO3 (LLTO) nanofibers, poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP), and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) is fabricated in this work. The effects of the LLTO filler fraction and morphology (spherical vs fibrous) on CSE conductivity are examined. Additionally, a fluorine-rich interlayer based on succinonitrile, fluoroethylene carbonate, and LiTFSI, denoted as succinonitrile interlayer (SNI), is developed to reduce the large interfacial impedance. The use of SNI rather than a conventional ester-based interlayer (EBI) effectively decreases the Li//CSE interfacial resistance and suppresses unfavorable interfacial side reactions. The LiF- and CFx-rich solid electrolyte interphase (SEI), derived from SNI, on the Li metal electrode, mitigates the accumulation of dead Li and excessive SEI. Importantly, dehydrofluorination reactions of PVDF-HFP are significantly reduced by the introduction of SNI. A symmetric Li//CSE//Li cell with SNI exhibits a much longer cycle life than that of an EBI counterpart. A Li//CSE@SNI//LiFePO4 cell shows specific capacities of 150 and 112 mAh g-1 at 0.1 and 2 C (based on LiFePO4), respectively. After 100 charge-discharge cycles, 98% of the initial capacity is retained.
引用
收藏
页码:15429 / 15438
页数:10
相关论文
共 72 条
  • [1] High-voltage lithium-metal battery with three-dimensional mesoporous carbon anode host and ether/carbonate binary electrolyte
    Adhitama, Egy
    Rath, Purna Chandra
    Prayogi, Achmad
    Patra, Jagabandhu
    Lee, Tai-Chou
    Li, Ju
    Chang, Jeng-Kuei
    [J]. CARBON, 2021, 184 : 752 - 763
  • [2] Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction
    Bachman, John Christopher
    Muy, Sokseiha
    Grimaud, Alexis
    Chang, Hao-Hsun
    Pour, Nir
    Lux, Simon F.
    Paschos, Odysseas
    Maglia, Filippo
    Lupart, Saskia
    Lamp, Peter
    Giordano, Livia
    Shao-Horn, Yang
    [J]. CHEMICAL REVIEWS, 2016, 116 (01) : 140 - 162
  • [3] LiF modified stable flexible PVDF-garnet hybrid electrolyte for high performance all-solid-state Li-S batteries
    Bag, Sourav
    Zhou, Chengtian
    Kim, Patrick J.
    Pol, Vilas G.
    Thangadurai, Venkataraman
    [J]. ENERGY STORAGE MATERIALS, 2020, 24 : 198 - 207
  • [4] A hybrid solid electrolyte Li0.33La0.557TiO3/poly(acylonitrile) membrane infiltrated with a succinonitrile-based electrolyte for solid state lithium-ion batteries
    Bi, Jiaying
    Mu, Daobin
    Wu, Borong
    Fu, Jiale
    Yang, Hao
    Mu, Ge
    Zhang, Ling
    Wu, Feng
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (02) : 706 - 713
  • [5] Space-Charge Effects at the Li7La3Zr2O12/Poly(ethylene oxide) Interface
    Brogioli, Doriano
    Langer, Frederieke
    Kun, Robert
    La Mantia, Fabio
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (12) : 11999 - 12007
  • [6] CONDUCTIVITY AND TRANSFERENCE NUMBER MEASUREMENTS ON POLYMER ELECTROLYTES
    BRUCE, PG
    EVANS, J
    VINCENT, CA
    [J]. SOLID STATE IONICS, 1988, 28 : 918 - 922
  • [7] Lithium Dendrite in All-Solid-State Batteries: Growth Mechanisms, Suppression Strategies, and Characterizations
    Cao, Daxian
    Sun, Xiao
    Li, Qiang
    Natan, Avi
    Xiang, Pengyang
    Zhu, Hongli
    [J]. MATTER, 2020, 3 (01) : 57 - 94
  • [8] Chen J., ADV SCI, V548
  • [9] The Challenge of Lithium Metal Anodes for Practical Applications
    Chen, Yuqing
    Luo, Yang
    Zhang, Hongzhang
    Qu, Chao
    Zhang, Huamin
    Li, Xianfeng
    [J]. SMALL METHODS, 2019, 3 (07):
  • [10] A safe, high-rate and high-energy polymer lithium-ion battery based on gelled membranes prepared by electrospinning
    Croce, Fausto
    Focarete, Maria Letizia
    Hassoun, Jusef
    Meschini, Ida
    Scrosati, Bruno
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (03) : 921 - 927