Globally hypoelliptic triangularizable systems of periodic pseudo-differential operators

被引:1
|
作者
Silva, Fernando de Avila [1 ,2 ]
机构
[1] Univ Fed Parana, Dept Matemat, Curitiba, Parana, Brazil
[2] Caixa Postal 19081, BR-81531990 Curitiba, Brazil
关键词
Fourier series; global hypoellipticity; pseudo-differential operators; triangularization; VECTOR-FIELDS; HYPERBOLIC SYSTEMS; SOLVABILITY; TORUS;
D O I
10.1002/mana.202100132
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper presents an investigation on the global hypoellipticity problem for a class of systems of pseudo-differential operators on the torus. The approach consists in establishing conditions on the matrix symbol of the system such that it can be transformed into a suitable triangular form involving a nilpotent upper triangular matrix. Hence, the global hypoellipticity is studied by analyzing the behavior of the eigenvalues and their averages.
引用
收藏
页码:2293 / 2320
页数:28
相关论文
共 50 条
  • [21] The endpoint estimates for pseudo-differential operators
    Wu, Guoning
    Yang, Jie
    ARCHIV DER MATHEMATIK, 2025,
  • [22] Lie Bialgebroid of Pseudo-differential Operators
    Anahita Eslami Rad
    Journal of Nonlinear Mathematical Physics, 2022, 29 : 869 - 895
  • [23] Pseudo-Differential Operators with Point Interactions
    S. ALBEVERIO
    P. KURASOV
    Letters in Mathematical Physics, 1997, 41 : 79 - 92
  • [24] PSEUDO-DIFFERENTIAL OPERATORS FOR WEYL TRANSFORMS
    Duan, Xiaoxi
    Wong, M. W.
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2013, 75 (04): : 3 - 12
  • [25] Pseudo-differential operators with point interactions
    Albeverio, S
    Kurasov, P
    LETTERS IN MATHEMATICAL PHYSICS, 1997, 41 (01) : 79 - 92
  • [26] Lp-Estimates for pseudo-differential operators on Zn
    Carlos Andres, Rodriguez Torijano
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2011, 2 (03) : 367 - 375
  • [27] Pseudo-Differential Operators with Symbols in Modulation Spaces
    Toft, Joachim
    PSEUDO-DIFFERENTIAL OPERATORS: COMPLEX ANALYSIS AND PARTIAL DIFFERENTIAL EQUATIONS, 2010, 205 : 223 - 234
  • [28] Pseudo-differential operators in the generalized weinstein setting
    Ben Mohamed, Hassen
    Bettaibi, Youssef
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (07) : 3345 - 3361
  • [29] Pseudo-differential operators with nonlinear quantizing functions
    Esposito, Massimiliano
    Ruzhansky, Michael
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2020, 150 (01) : 103 - 130
  • [30] Pseudo-Differential Operators on S1
    Molahajloo, Shahla
    Wong, M. W.
    NEW DEVELOPMENTS IN PSEUDO-DIFFERENTIAL OPERATORS, 2009, 189 : 297 - 306