Acquisition of Inducing Policy in Collaborative Robot Navigation Based on Multiagent Deep Reinforcement Learning

被引:1
|
作者
Kamezaki, Mitsuhiro [1 ]
Ong, Ryan [2 ]
Sugano, Shigeki [2 ]
机构
[1] Waseda Univ, Waseda Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1620044, Japan
[2] Waseda Univ, Dept Modern Mech Engn, Shinjuku Ku, Tokyo 1698555, Japan
基金
日本学术振兴会; 日本科学技术振兴机构;
关键词
Autonomous robots; Mobile robots; Reinforcement learning; Deep learning; Multi-agent systems; Robot motion; Autonomous mobile robot; multiagent deep reinforcement learning; inducing policy acquisition; collaborative robot navigation;
D O I
10.1109/ACCESS.2023.3253513
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
To avoid inefficient movement or the freezing problem in crowded environments, we previously proposed a human-aware interactive navigation method that uses inducement, i.e., voice reminders or physical touch. However, the use of inducement largely depends on many factors, including human attributes, task contents, and environmental contexts. Thus, it is unrealistic to pre-design a set of parameters such as the coefficients in the cost function, personal space, and velocity in accordance with the situation. To understand and evaluate if inducement (voice reminder in this study) is effective and how and when it must be used, we propose to comprehend them through multiagent deep reinforcement learning in which the robot voluntarily acquires an inducing policy suitable for the situation. Specifically, we evaluate whether a voice reminder can improve the time to reach the goal by learning when the robot uses it. Results of simulation experiments with four different situations show that the robot could learn inducing policies suited for each situation, and the effectiveness of inducement is greatly improved in more congested and narrow situations.
引用
收藏
页码:23946 / 23955
页数:10
相关论文
共 50 条
  • [21] Target Search and Navigation in Heterogeneous Robot Systems with Deep Reinforcement Learning
    Chen, Yun
    Xiao, Jiaping
    MACHINE INTELLIGENCE RESEARCH, 2025, 22 (01) : 79 - 90
  • [22] Memory-based crowd-aware robot navigation using deep reinforcement learning
    Sunil Srivatsav Samsani
    Husna Mutahira
    Mannan Saeed Muhammad
    Complex & Intelligent Systems, 2023, 9 : 2147 - 2158
  • [23] Robot skill acquisition in assembly process using deep reinforcement learning
    Li, Fengming
    Jiang, Qi
    Zhang, Sisi
    Wei, Meng
    Song, Rui
    NEUROCOMPUTING, 2019, 345 : 92 - 102
  • [24] Memory-based crowd-aware robot navigation using deep reinforcement learning
    Samsani, Sunil Srivatsav
    Mutahira, Husna
    Muhammad, Mannan Saeed
    COMPLEX & INTELLIGENT SYSTEMS, 2023, 9 (02) : 2147 - 2158
  • [25] RMRL: Robot Navigation in Crowd Environments With Risk Map-Based Deep Reinforcement Learning
    Yang, Haodong
    Yao, Chenpeng
    Liu, Chengju
    Chen, Qijun
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (12) : 7930 - 7937
  • [26] A Novel and Efficient Influence-Seeking Exploration in Deep Multiagent Reinforcement Learning
    Yoo, Byunghyun
    Ningombam, Devarani Devi
    Yi, Sungwon
    Kim, Hyun Woo
    Chung, Euisok
    Han, Ran
    Song, Hwa Jeon
    IEEE ACCESS, 2022, 10 : 47741 - 47753
  • [27] Rule-Based Reinforcement Learning for Efficient Robot Navigation With Space Reduction
    Zhu, Yuanyang
    Wang, Zhi
    Chen, Chunlin
    Dong, Daoyi
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2022, 27 (02) : 846 - 857
  • [29] Collaborative Decision-Making Method for Multi-UAV Based on Multiagent Reinforcement Learning
    Li, Shaowei
    Jia, Yuhong
    Yang, Fan
    Qin, Qingyang
    Gao, Hui
    Zhou, Yaoming
    IEEE ACCESS, 2022, 10 : 91385 - 91396
  • [30] Acquisition of Automated Guided Vehicle Route Planning Policy Using Deep Reinforcement Learning
    Kamoshida, Ryota
    Kazama, Yoriko
    2017 6TH IEEE INTERNATIONAL CONFERENCE ON ADVANCED LOGISTICS AND TRANSPORT (ICALT), 2017, : 1 - 6