Acquisition of Inducing Policy in Collaborative Robot Navigation Based on Multiagent Deep Reinforcement Learning

被引:1
|
作者
Kamezaki, Mitsuhiro [1 ]
Ong, Ryan [2 ]
Sugano, Shigeki [2 ]
机构
[1] Waseda Univ, Waseda Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1620044, Japan
[2] Waseda Univ, Dept Modern Mech Engn, Shinjuku Ku, Tokyo 1698555, Japan
基金
日本学术振兴会; 日本科学技术振兴机构;
关键词
Autonomous robots; Mobile robots; Reinforcement learning; Deep learning; Multi-agent systems; Robot motion; Autonomous mobile robot; multiagent deep reinforcement learning; inducing policy acquisition; collaborative robot navigation;
D O I
10.1109/ACCESS.2023.3253513
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
To avoid inefficient movement or the freezing problem in crowded environments, we previously proposed a human-aware interactive navigation method that uses inducement, i.e., voice reminders or physical touch. However, the use of inducement largely depends on many factors, including human attributes, task contents, and environmental contexts. Thus, it is unrealistic to pre-design a set of parameters such as the coefficients in the cost function, personal space, and velocity in accordance with the situation. To understand and evaluate if inducement (voice reminder in this study) is effective and how and when it must be used, we propose to comprehend them through multiagent deep reinforcement learning in which the robot voluntarily acquires an inducing policy suitable for the situation. Specifically, we evaluate whether a voice reminder can improve the time to reach the goal by learning when the robot uses it. Results of simulation experiments with four different situations show that the robot could learn inducing policies suited for each situation, and the effectiveness of inducement is greatly improved in more congested and narrow situations.
引用
收藏
页码:23946 / 23955
页数:10
相关论文
共 50 条
  • [1] A Collaborative Multiagent Reinforcement Learning Method Based on Policy Gradient Potential
    Zhang, Zhen
    Ong, Yew-Soon
    Wang, Dongqing
    Xue, Binqiang
    IEEE TRANSACTIONS ON CYBERNETICS, 2021, 51 (02) : 1015 - 1027
  • [2] Mobile Robot Navigation Using Deep Reinforcement Learning
    Lee, Min-Fan Ricky
    Yusuf, Sharfiden Hassen
    PROCESSES, 2022, 10 (12)
  • [3] A REINFORCEMENT LEARNING APPROACH FOR MULTIAGENT NAVIGATION
    Martinez-Gil, Francisco
    Barber, Fernando
    Lozano, Miguel
    Grimaldo, Francisco
    Fernandez, Fernando
    ICAART 2010: PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE, VOL 1: ARTIFICIAL INTELLIGENCE, 2010, : 607 - 610
  • [4] Vision-Based Autonomous Navigation Approach for a Tracked Robot Using Deep Reinforcement Learning
    Ejaz, Muhammad Mudassir
    Tang, Tong Boon
    Lu, Cheng-Kai
    IEEE SENSORS JOURNAL, 2021, 21 (02) : 2230 - 2240
  • [5] Deep Reinforcement Learning for Mobile Robot Navigation
    Gromniak, Martin
    Stenzel, Jonas
    2019 4TH ASIA-PACIFIC CONFERENCE ON INTELLIGENT ROBOT SYSTEMS (ACIRS 2019), 2019, : 68 - 73
  • [6] Deep multiagent reinforcement learning: challenges and directions
    Wong, Annie
    Back, Thomas
    Kononova, Anna, V
    Plaat, Aske
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (06) : 5023 - 5056
  • [7] Deep multiagent reinforcement learning: challenges and directions
    Annie Wong
    Thomas Bäck
    Anna V. Kononova
    Aske Plaat
    Artificial Intelligence Review, 2023, 56 : 5023 - 5056
  • [8] Quantum Deep Reinforcement Learning for Robot Navigation Tasks
    Hohenfeld, Hans
    Heimann, Dirk
    Wiebe, Felix
    Kirchner, Frank
    IEEE ACCESS, 2024, 12 : 87217 - 87236
  • [9] Autonomous Navigation by Mobile Robot with Sensor Fusion Based on Deep Reinforcement Learning
    Ou, Yang
    Cai, Yiyi
    Sun, Youming
    Qin, Tuanfa
    SENSORS, 2024, 24 (12)
  • [10] A Behavior-Based Mobile Robot Navigation Method with Deep Reinforcement Learning
    Li, Juncheng
    Ran, Maopeng
    Wang, Han
    Xie, Lihua
    UNMANNED SYSTEMS, 2021, 9 (03) : 201 - 209