A molecular dynamics study on nanobubble formation and dynamics via methane hydrate dissociation

被引:13
|
作者
Lu, Yi [1 ]
Feng, Yu [1 ]
Guan, Dawei [1 ]
Lv, Xin [2 ]
Li, Qingping [2 ]
Zhang, Lunxiang [1 ]
Zhao, Jiafei [1 ]
Yang, Lei [1 ]
Song, Yongchen [1 ]
机构
[1] Dalian Univ Technol, Key Lab Ocean Energy Utilizat & Energy Conservat, Minist Educ, Dalian 116024, Peoples R China
[2] State Key Lab Nat Gas Hydrate, Beijing 100028, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Nanobubble; Gas hydrate; Kinetics; Molecular dynamics simulation; GAS-HYDRATE; NANO-BUBBLES; NUCLEATION; WATER; STABILITY; SURFACE; TRANSITION; KINETICS; SYSTEM;
D O I
10.1016/j.fuel.2023.127650
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The formation condition of nanobubbles and its effect on the methane hydrate dissociation were studied using molecular dynamics (MD) simulations. To investigate the effect of liquid water proportion on the methane hy-drate dissociation path and nanobubble formation conditions, two different initial configurations were built. Considering low liquid water proportion simulation, four main dissociation stages were identified, and nano-bubbles formed when the methane supersaturation condition was met. During this period, hydrate dissociation rate decreases and fluctuates around zero, indicating that mass transfer limitation forms and hydrate cages undergo a long-term disappearance and rebuilding process. Nanobubbles can form in two distinct regions: the liquid water region and the final hydrate slice region. Hydrate dissociation rate increased after the first nano-bubble formed, which broke the mass transfer limitation. Small nanobubbles formed at the end of the hydrate dissociation process also contributed to the final hydrate slice collapsing by shortening the diffusion distance of methane molecules to the gas phase. At the end of the simulation, only one nanobubble survived in the system with a mole percent of methane in water for two systems remaining at 0.4 and 0.9, respectively.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Effect of Bubble Formation on the Dissociation of Methane Hydrate in Water: A Molecular Dynamics Study
    Yagasaki, Takuma
    Matsumoto, Masakazu
    Andoh, Yoshimichi
    Okazaki, Susumu
    Tanaka, Hideki
    JOURNAL OF PHYSICAL CHEMISTRY B, 2014, 118 (07) : 1900 - 1906
  • [2] Molecular insights into methane hydrate dissociation: Role of methane nanobubble formation
    Moorjani, Bhavesh
    Adhikari, Jhumpa
    Hait, Samik
    JOURNAL OF CHEMICAL PHYSICS, 2024, 161 (10)
  • [3] Molecular dynamics study on the dissociation of methane hydrate via inorganic salts
    Xu, Jiafang
    Gu, Tiantian
    Sun, Zening
    Li, Xiaodi
    Wang, Xiaopu
    MOLECULAR PHYSICS, 2016, 114 (01) : 34 - 43
  • [4] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
    Wang, Zilin
    Yang, Liang
    Liu, Changsheng
    Lin, Shiwei
    CHINESE PHYSICS B, 2023, 32 (02)
  • [5] New insights into methane hydrate dissociation: Utilization of molecular dynamics strategy
    Kondori, Javad
    Zendehboudi, Sohrab
    James, Lesley
    FUEL, 2019, 249 : 264 - 276
  • [6] Insights of Molecular Dynamics Simulation To Investigate the Impact of Ethylene Glycol on Methane Hydrate Dissociation
    Hembram, Bidesh Kumar
    Mahmud, Muntasir
    Tripathi, Rishabh
    Nair, Vishnu Chandrasekharan
    Sharma, Tushar
    ENERGY & FUELS, 2024, 38 (03) : 1923 - 1933
  • [7] Effects of nanobubbles on methane hydrate dissociation: A molecular simulation study
    Fang, Bin
    Moultos, Othonas A.
    Lu, Tao
    Sun, Jiaxin
    Liu, Zhichao
    Ning, Fulong
    Vlugt, Thijs J. H.
    FUEL, 2023, 345
  • [8] Molecular Dynamics Simulation of Methane Hydrate Formation and Dissociation in the Clay Pores with Fatty Acids
    Ji, Haoqing
    Chen, Daoyi
    Zhao, Chen
    Wu, Guozhong
    JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (02) : 1318 - 1325
  • [9] The effect of electric fields in methane hydrate growth and dissociation: A molecular dynamics simulation
    Xu, Tingting
    Lang, Xuemei
    Fan, Shuanshi
    Wang, Yanhong
    Chen, Jianbiao
    COMPUTATIONAL AND THEORETICAL CHEMISTRY, 2019, 1149 : 57 - 68
  • [10] Molecular dynamics simulation of methane hydrate dissociation by depressurisation
    Yan, KeFeng
    Li, XiaoSen
    Chen, ZhaoYang
    Li, Bo
    Xu, ChunGang
    MOLECULAR SIMULATION, 2013, 39 (04) : 251 - 260