Productivity-oriented SLM process parameters effect on the fatigue strength of Inconel 718

被引:22
作者
Macoretta, G. [1 ]
Bertini, L. [1 ]
Monelli, B. D. [1 ]
Berto, F. [2 ]
机构
[1] Univ Pisa, Dept Civil & Ind Engn, Largo Lucio Lazzarino 2, I-56126 Pisa, Italy
[2] Sapienza Univ Rome, Dept Chem Engn Mat Environm, Via Eudossiana 18, I-00184 Rome, Italy
关键词
Selective laser melting; S-N curves; High cycle fatigue; Surface roughness; Defects; RESIDUAL-STRESSES; MEAN STRESS; DEFECTS; MICROSTRUCTURE;
D O I
10.1016/j.ijfatigue.2022.107384
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The low productivity of the SLM process is known to be a limiting factor, but speeding up the process can lead to material defects. Two sets of SLM process parameters enhancing its productivity by 50 % were devised and tested in comparison with baseline sets, in terms of material microstructure, porosity, surface roughness, static mechanical properties, and HCF behavior, in the as-built and aged conditions. The as-built surface was investigated. Despite a significant increase in the porosity and surface roughness, the fatigue strength was reduced by 5 %. The Murakami root area(R) parameter effectively correlates the fatigue strength and surface roughness variations.
引用
收藏
页数:17
相关论文
共 50 条
[1]   Thermophysical properties of Inconel 718 alloy [J].
Agazhanov, A. Sh ;
Samoshkin, D. A. ;
Kozlovskii, Yu M. .
XXXV SIBERIAN THERMOPHYSICAL SEMINAR, 2019, 2019, 1382
[2]   On selective laser melting of Inconel 718: Densification, surface roughness, and residual stresses [J].
Balbaa, Mohamed ;
Mekhiel, Sameh ;
Elbestawi, Mohamed ;
McIsaac, Jeff .
MATERIALS & DESIGN, 2020, 193
[3]   Low- and high-cycle fatigue resistance of Ti-6Al-4V ELI additively manufactured via selective laser melting: Mean stress and defect sensitivity [J].
Benedetti, M. ;
Fontanari, V. ;
Bandini, M. ;
Zanini, F. ;
Carmignato, S. .
INTERNATIONAL JOURNAL OF FATIGUE, 2018, 107 :96-109
[4]   A comparison of fatigue strength sensitivity to defects for materials manufactured by AM or traditional processes [J].
Beretta, S. ;
Romano, S. .
INTERNATIONAL JOURNAL OF FATIGUE, 2017, 94 :178-191
[5]   Fatigue strength of LPBF Ti6Al4V machined under flood and cryogenic lubri-cooling conditions [J].
Bertolini, Rachele ;
Campagnolo, Alberto ;
Sorgato, Marco ;
Ghiotti, Andrea ;
Bruschi, Stefania ;
Meneghetti, Giovanni .
INTERNATIONAL JOURNAL OF FATIGUE, 2022, 162
[6]   Texture and Microstructural Features at Different Length Scales in Inconel 718 Produced by Selective Laser Melting [J].
Calandri, Michele ;
Yin, Shuo ;
Aldwell, Barry ;
Calignano, Flaviana ;
Lupoi, Rocco ;
Ugues, Daniele .
MATERIALS, 2019, 12 (08)
[7]   Mean stress effects in stress-life fatigue and the Walker equation [J].
Dowling, N. E. ;
Calhoun, C. A. ;
Arcari, A. .
FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2009, 32 (03) :163-179
[8]  
Elber W., 1970, Engineering Fracture Mechanics, V2, P37, DOI 10.1016/0013-7944(70)90028-7
[9]   A modified volumetric energy density-based approach for porosity assessment in additive manufacturing process design [J].
Ferro, Paolo ;
Meneghello, Roberto ;
Savio, Gianpaolo ;
Berto, Filippo .
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2020, 110 (7-8) :1911-1921
[10]   Defects as a root cause of fatigue weakening of additively manufactured AlSi10Mg components [J].
Ferro, Paolo ;
Fabrizi, Alberto ;
Berto, Filippo ;
Savio, Gianpaolo ;
Meneghello, Roberto ;
Rosso, Stefano .
THEORETICAL AND APPLIED FRACTURE MECHANICS, 2020, 108