The Dynamics of a Bioeconomic Model with Michaelis-Menten Type Prey Harvesting

被引:5
作者
Jiang, Jiao [1 ]
Li, Xiushuai [1 ]
Wu, Xiaotian [1 ]
机构
[1] Shanghai Maritime Univ, Dept Math, Shanghai 201306, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Differential-algebraic system; Predator-prey system; Hopf bifurcation; Michaelis-Menten type harvesting; BIFURCATION-ANALYSIS; HOPF-BIFURCATION; PREDATOR; SYSTEM; STABILITY; DELAY;
D O I
10.1007/s40840-022-01452-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we propose a bioeconomic predator-prey model with Michaelis-Menten type prey harvesting and general functional response which is described by a differential-algebraic system. Using the local parameterization, we derive an equivalent parametric system and investigate its dynamics in terms of local stability and Hopf bifurcation. The economic profit is chosen as a bifurcation parameter to prove the occurrence of Hopf bifurcation phenomenon in the neighborhood of the interior equilibrium. Moreover, we calculate the first Lyapunov coefficient to study the direction of Hopf bifurcation and the stability of bifurcated periodic solutions based on the normal form theory. Numerical simulations are carried out to demonstrate the analytical results.
引用
收藏
页数:20
相关论文
共 42 条
  • [11] BIFURCATION ANALYSIS IN A PREDATOR-PREY MODEL WITH CONSTANT-YIELD PREDATOR HARVESTING
    Huang, Jicai
    Gong, Yijun
    Ruan, Shigui
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2013, 18 (08): : 2101 - 2121
  • [12] Huang Jicai, 2004, [Acta Mathematicae Applicatae Sinica, Ying yung shu hseh hseh pao], V20, P167
  • [13] Ilchmann A., 2013, Surveys in Differential-Algebraic Equations I, V1, DOI DOI 10.1007/978-3-642-34928-7
  • [14] Multistable Phenomena Involving Equilibria and Periodic Motions in Predator-Prey Systems
    Jiang, Jiao
    Yu, Pei
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2017, 27 (03):
  • [15] Qualitative analysis of a harvested predator-prey system with Holling type III functional response
    Jiang, Qiaohong
    Wang, Jinghai
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2013, : 1 - 17
  • [16] Global dynamics and controllability of a harvested prey-predator system with Holling type III functional response
    Kar, T. K.
    Matsuda, H.
    [J]. NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2007, 1 (01) : 59 - 67
  • [17] Kot M., 2001, Elements of Mathematical Ecology, DOI DOI 10.1017/CBO9780511608520
  • [18] KUANG Y, 1988, Mathematical Biosciences, V88, P67, DOI 10.1016/0025-5564(88)90049-1
  • [19] Bifurcation and stability analysis of a ratio-dependent predator-prey model with predator harvesting rate
    Lajmiri, Z.
    Ghaziani, R. Khoshsiar
    Orak, Iman
    [J]. CHAOS SOLITONS & FRACTALS, 2018, 106 : 193 - 200
  • [20] Bifurcation analysis of a predator-prey system with generalised Holling type III functional response
    Lamontagne, Yann
    Coutu, Caroline
    Rousseau, Christiane
    [J]. JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2008, 20 (03) : 535 - 571