Brill-Noether loci with ramification at two points

被引:2
|
作者
Teixidor-I-Bigas, Montserrat [1 ]
机构
[1] Tufts Univ, Math Dept, 177 Coll Ave, Medford, MA 02155 USA
关键词
Linear Series; Brill-Noether; Ramification Point; LIMIT LINEAR SERIES; PETRI MAP; PROOF; DIVISORS; BUNDLES; THEOREM;
D O I
10.1007/s10231-022-01277-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the injectivity of the Petri map for linear series on a general curve with given ramification at two generic points. We also describe the components of such a set of linear series on a chain of elliptic curves.
引用
收藏
页码:1217 / 1232
页数:16
相关论文
共 50 条
  • [31] Ulrich sheaves and higher-rank Brill-Noether theory
    Kulkarni, Rajesh S.
    Mustopa, Yusuf
    Shipman, Ian
    JOURNAL OF ALGEBRA, 2017, 474 : 166 - 179
  • [32] Prym-Brill-Noether Loci of Special Curves
    Creech, Steven
    Len, Yoav
    Ritter, Caelan
    Wu, Derek
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (04) : 2688 - 2728
  • [33] A simple characteristic-free proof of the Brill-Noether theorem
    Brian Osserman
    Bulletin of the Brazilian Mathematical Society, New Series, 2014, 45 : 807 - 818
  • [34] REDUCIBLE HILBERT SCHEME OF SMOOTH CURVES WITH POSITIVE BRILL-NOETHER NUMBER
    KEEM, CH
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 122 (02) : 349 - 354
  • [35] A journey through some of the results by E. Ballico related to Brill-Noether theory
    Coppens, Marc
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2025,
  • [36] The Strong Maximal Rank conjecture and higher rank Brill-Noether theory
    Cotterill, Ethan
    Alonso Gonzalo, Adrian
    Zhang, Naizhen
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2021, 104 (01): : 169 - 205
  • [37] Brill-Noether theory of curves on Enriques surfaces II: the Clifford index
    Knutsen, Andreas Leopold
    Lopez, Angelo Felice
    MANUSCRIPTA MATHEMATICA, 2015, 147 (1-2) : 193 - 237
  • [38] Brill-Noether theory of curves on Enriques surfaces I: the positive cone and gonality
    Knutsen, Andreas Leopold
    Lopez, Angelo Felice
    MATHEMATISCHE ZEITSCHRIFT, 2009, 261 (03) : 659 - 690
  • [39] HIGHER RANK BRILL-NOETHER THEORY ON SECTIONS OF K3 SURFACES
    Farkas, Gavril
    Ortega, Angela
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2012, 23 (07)
  • [40] Equivariant Brill-Noether theory for elliptic operators and superrigidity of J-holomorphic maps
    Doan, Aleksander
    Walpuski, Thomas
    FORUM OF MATHEMATICS SIGMA, 2023, 11