Self-adjointness of the 2D Dirac Operator with Singular Interactions Supported on Star Graphs

被引:4
作者
Frymark, Dale [1 ]
Lotoreichik, Vladimir [1 ]
机构
[1] Czech Acad Sci, Nucl Phys Inst, Dept Theoret Phys, Rez 25068, Czech Republic
来源
ANNALES HENRI POINCARE | 2023年 / 24卷 / 01期
关键词
SHELL INTERACTIONS; EXTENSIONS;
D O I
10.1007/s00023-022-01213-w
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the two-dimensional Dirac operator with Lorentz-scalar delta-shell interactions on each edge of a star graph. An orthogonal decomposition is performed which shows such an operator is unitarily equivalent to an orthogonal sum of half-line Dirac operators with off-diagonal Coulomb potentials. This decomposition reduces the computation of the deficiency indices to determining the number of eigenvalues of a one-dimensional spin-orbit operator in the interval (-1/2,1/2). If the number of edges of the star graph is two or three, these deficiency indices can then be analytically determined for a range of parameters. For higher numbers of edges, it is possible to numerically calculate the deficiency indices. Among others, examples are given where the strength of the Lorentz-scalar interactions directly change the deficiency indices, while other parameters are all fixed and where the deficiency indices are (2,2), neither of which have been observed in the literature to the best knowledge of the authors. For those Dirac operators which are not already self-adjoint and do not have 0 in the spectrum of the associated spin-orbit operator, the distinguished self-adjoint extension is also characterized.
引用
收藏
页码:179 / 221
页数:43
相关论文
共 33 条
[1]   An Isoperimetric-Type Inequality for Electrostatic Shell Interactions for Dirac Operators [J].
Arrizabalaga, Naiara ;
Mas, Albert ;
Vega, Luis .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 344 (02) :483-505
[2]   SHELL INTERACTIONS FOR DIRAC OPERATORS: ON THE POINT SPECTRUM AND THE CONFINEMENT [J].
Arrizabalaga, Naiara ;
Mas, Albert ;
Vega, Luis .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2015, 47 (02) :1044-1069
[3]   Shell interactions for Dirac operators [J].
Arrizabalaga, Naiara ;
Mas, Albert ;
Vega, Luis .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2014, 102 (04) :617-639
[4]   Two-dimensional Dirac operators with singular interactions supported on closed curves [J].
Behrndt, Jussi ;
Holzmann, Markus ;
Ourmieres-Bonafos, Thomas ;
Pankrashkin, Konstantin .
JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 279 (08)
[5]  
Behrndt J, 2019, QUANTUM STUD-MATH FD, V6, P295, DOI 10.1007/s40509-019-00186-6
[6]   On the spectral properties of Dirac operators with electrostatic δ-shell interactions [J].
Behrndt, Jussi ;
Exner, Pavel ;
Holzmann, Markus ;
Lotoreichik, Vladimir .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2018, 111 :47-78
[7]   Spectral Gaps of Dirac Operators Describing Graphene Quantum Dots [J].
Benguria, Rafael D. ;
Fournais, Soren ;
Stockmeyer, Edgardo ;
Van den Bosch, Hanne .
MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2017, 20 (02)
[8]   Self-Adjointness of Two-Dimensional Dirac Operators on Domains [J].
Benguria, Rafael D. ;
Fournais, Soren ;
Stockmeyer, Edgardo ;
Van Den Bosch, Hanne .
ANNALES HENRI POINCARE, 2017, 18 (04) :1371-1383
[9]  
Birman M. Sh., 1962, Izv. Vyssh. Uchebn. Zaved. Mat, P12
[10]   Homogeneous Schrodinger Operators on Half-Line [J].
Bruneau, Laurent ;
Derezinski, Jan ;
Georgescu, Vladimir .
ANNALES HENRI POINCARE, 2011, 12 (03) :547-590