Unraveling the role of basic sites in the hydrogenation of CO2 to formic acid over Ni-based catalysts

被引:13
作者
Wang, Yixuan [1 ]
Ban, Hongyan [1 ]
Wang, Yugao [1 ]
Yao, Ruwei [1 ]
Zhao, Shimin [1 ]
Hu, Jiangliang [1 ]
Li, Congming [1 ]
机构
[1] Taiyuan Univ Technol, Coll Chem Engn & Technol, State Key Lab Clean & Efficient Coal Utilizat, Taiyuan 030024, Peoples R China
基金
中国国家自然科学基金;
关键词
Basic sites; Mg/Al ratio; CO2; hydrogenation; Formic acid; Metal -support interactions; HYDROXIDE-DERIVED CATALYSTS; SINGLE-ATOM CATALYSTS; CARBON-DIOXIDE; HETEROGENEOUS CATALYSTS; FORMATE; CONVERSION; PD; TRANSFORMATION; DESIGN; PHASE;
D O I
10.1016/j.jcat.2024.115357
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Basic sites profoundly affect the mode and strength of CO2 adsorption in the hydrogenation of CO2 to formic acid (FA), however, the mechanism by which the quantities and strength of basic sites affect the reaction process is not yet clear. Herein, a Ni/MgaAlOx catalyst has been developed and the basic sites of the catalyst can be modulated by simply altering the Mg/Al ratio. Through a series of characterizations and experiments, it was observed that weak and medium basic sites synergistically catalyzed the hydrogenation of CO2 to formic acid, and a reasonable number of weak basic sites can improve reaction performance when a sufficient number of medium basic sites guarantee the fundamental catalytic activity. Moreover, the number and distribution of basic sites are also tightly related to metal-support interactions. This strategy provides theoretical guidance and a feasible scheme for optimizing the performance of non-precious metal heterogeneous catalysts.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Mild and selective hydrogenation of CO2 into formic acid over electron-rich MoC nanocatalysts
    Wang, Hong-Hui
    Zhang, Shi-Nan
    Zhao, Tian-Jian
    Liu, Yong-Xing
    Liu, Xi
    Su, Juan
    Li, Xin-Hao
    Chen, Jie-Sheng
    SCIENCE BULLETIN, 2020, 65 (08) : 651 - 657
  • [32] Active sites in CO2 hydrogenation over confined VOx-Rh catalysts
    Wang, Guishuo
    Luo, Ran
    Yang, Chengsheng
    Song, Jimin
    Xiong, Chuanye
    Tian, Hao
    Zhao, Zhi-Jian
    Mu, Rentao
    Gong, Jinlong
    SCIENCE CHINA-CHEMISTRY, 2019, 62 (12) : 1710 - 1719
  • [33] The role of CO2 dissociation in CO2 hydrogenation to ethanol on CoCu/silica catalysts
    Wang, Zhongyan
    Yang, Chengsheng
    Li, Xianghong
    Song, Xiwen
    Pei, Chunlei
    Zhao, Zhi-Jian
    Gong, Jinlong
    NANO RESEARCH, 2023, 16 (05) : 6128 - 6133
  • [34] Hydrogenation of CO2 to formic acid in the presence of the Wilkinson complex
    Ezhova, NN
    Kolesnichenko, NV
    Bulygin, AV
    Slivinskii, EV
    Han, S
    RUSSIAN CHEMICAL BULLETIN, 2002, 51 (12) : 2165 - 2169
  • [35] Ni-Based Catalysts for CO2 Methanation: Exploring the Support Role in Structure-Activity Relationships
    Musab Ahmed, Syed
    Ren, Jie
    Ullah, Inam
    Lou, Hao
    Xu, Nuo
    Abbasi, Zeeshan
    Wang, Zhandong
    CHEMSUSCHEM, 2024, 17 (09)
  • [36] Catalytic Hydrogenation of CO2 to Isoparaffins over Fe-Based Multifunctional Catalysts
    Wei, Jian
    Yao, Ruwei
    Ge, Qjngjie
    Wen, Zhiyong
    Ji, Xuewei
    Fang, Chuanyan
    Zhang, Jixin
    Xu, Hengyong
    Sun, Jian
    ACS CATALYSIS, 2018, 8 (11): : 9958 - 9967
  • [37] Hydrogenation of CO2 to formic acid in the presence of the Wilkinson complex
    N. N. Ezhova
    N. V. Kolesnichenko
    A. V. Bulygin
    E. V. Slivinskii
    S. Han
    Russian Chemical Bulletin, 2002, 51 : 2165 - 2169
  • [38] A DFT study on the catalytic hydrogenation of CO2 to formic acid over Ti-doped graphene nanoflake
    Esrafili, Mehdi D.
    Dinparast, Leila
    CHEMICAL PHYSICS LETTERS, 2017, 682 : 49 - 54
  • [39] Direct hydrogenation of CO2-rich scrubbing solvents to formate/formic acid over heterogeneous Ru catalysts: A sustainable approach towards continuous integrated CCU
    Mariyaselvakumar, Mariyamuthu
    Kadam, Ganesh Govind
    Mani, Mariappan
    Srinivasan, Kannan
    Konwar, Lakhya Jyoti
    JOURNAL OF CO2 UTILIZATION, 2023, 67
  • [40] Recent Developments in Reversible CO2 Hydrogenation and Formic Acid Dehydrogenation over Molecular Catalysts
    Kushwaha, Sanjeev
    Parthiban, Jayashree
    Singh, Sanjay Kumar
    ACS OMEGA, 2023, 8 (42): : 38773 - 38793