Unraveling the role of basic sites in the hydrogenation of CO2 to formic acid over Ni-based catalysts

被引:13
|
作者
Wang, Yixuan [1 ]
Ban, Hongyan [1 ]
Wang, Yugao [1 ]
Yao, Ruwei [1 ]
Zhao, Shimin [1 ]
Hu, Jiangliang [1 ]
Li, Congming [1 ]
机构
[1] Taiyuan Univ Technol, Coll Chem Engn & Technol, State Key Lab Clean & Efficient Coal Utilizat, Taiyuan 030024, Peoples R China
基金
中国国家自然科学基金;
关键词
Basic sites; Mg/Al ratio; CO2; hydrogenation; Formic acid; Metal -support interactions; HYDROXIDE-DERIVED CATALYSTS; SINGLE-ATOM CATALYSTS; CARBON-DIOXIDE; HETEROGENEOUS CATALYSTS; FORMATE; CONVERSION; PD; TRANSFORMATION; DESIGN; PHASE;
D O I
10.1016/j.jcat.2024.115357
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Basic sites profoundly affect the mode and strength of CO2 adsorption in the hydrogenation of CO2 to formic acid (FA), however, the mechanism by which the quantities and strength of basic sites affect the reaction process is not yet clear. Herein, a Ni/MgaAlOx catalyst has been developed and the basic sites of the catalyst can be modulated by simply altering the Mg/Al ratio. Through a series of characterizations and experiments, it was observed that weak and medium basic sites synergistically catalyzed the hydrogenation of CO2 to formic acid, and a reasonable number of weak basic sites can improve reaction performance when a sufficient number of medium basic sites guarantee the fundamental catalytic activity. Moreover, the number and distribution of basic sites are also tightly related to metal-support interactions. This strategy provides theoretical guidance and a feasible scheme for optimizing the performance of non-precious metal heterogeneous catalysts.
引用
收藏
页数:10
相关论文
共 50 条
  • [11] Immobilized heterogeneous catalysts for CO2 2 hydrogenation to formic acid: A review
    Li, Hongwei
    Peng, Bo
    Lv, Shuaishuai
    Zhou, Qiuming
    Yan, Zhennan
    Luan, Xuebin
    Liu, Xuandong
    Niu, Congcong
    Liu, Yanfang
    Hou, Jili
    Wang, Zhiqiang
    Chen, Ying
    Yan, Binhang
    Tang, Zhigang
    Hou, Chaopeng
    Qin, Kang
    Wu, Yu
    Xu, Run
    CARBON CAPTURE SCIENCE & TECHNOLOGY, 2024, 13
  • [12] Ni-based electrocatalysts for unconventional CO2 reduction reaction to formic acid
    Lepre, Enrico
    Heske, Julian
    Nowakowski, Michal
    Scoppola, Ernesto
    Zizak, Ivo
    Heil, Tobias
    Kuhne, Thomas D.
    Antonietti, Markus
    Lopez-Salas, Nieves
    Albero, Josep
    NANO ENERGY, 2022, 97
  • [13] Recent strategies for enhancing the catalytic activity of CO2 hydrogenation to formate/formic acid over Pd-based catalyst
    Verma, Priyanka
    Zhang, Siyuan
    Song, Shengnan
    Mori, Kohsuke
    Kuwahara, Yasutaka
    Wen, Meicheng
    Yamashita, Hiromi
    An, Taicheng
    JOURNAL OF CO2 UTILIZATION, 2021, 54
  • [14] The influence of preparation procedures on hydrogenation CO2 to formic acid over supported Ru catalysts
    Liu, Na
    Lei, Jie
    Li, Mengyao
    Wang, Peng
    CHEMICAL, MATERIAL AND METALLURGICAL ENGINEERING III, PTS 1-3, 2014, 881-883 : 283 - 286
  • [15] CO2 Hydrogenation to Formic Acid on Ni(111)
    Peng, Guowen
    Sibener, S. J.
    Schatz, George C.
    Ceyer, Sylvia T.
    Mavrikakis, Manos
    JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (04) : 3001 - 3006
  • [16] Hydrogenation of CO2 to formic acid over a Cu-embedded graphene: A DFT study
    Sirijaraensre, J.
    Limtrakul, J.
    APPLIED SURFACE SCIENCE, 2016, 364 : 241 - 248
  • [17] Hydrogenation of CO2 to methanol over CuCeTiOx catalysts
    Chang, Kuan
    Wang, Tiefeng
    Chen, Jingguang G.
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2017, 206 : 704 - 711
  • [18] Enhanced CO2 hydrogenation to light hydrocarbons on Ni-based catalyst by DBD plasma
    Ullah, Niamat
    Su, Meng
    Yang, Yuwang
    Li, Zhenhua
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (57) : 21735 - 21751
  • [19] Recent Progress in Porous Framework-immobilized Molecular Catalysts for CO2 Hydrogenation to Formic Acid
    Ding Yang
    Wang Wanhui
    Bao Ming
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2022, 43 (07):
  • [20] Rhodium nitrosyl catalysts for CO2 hydrogenation to formic acid under mild conditions
    Zou, Fenglou
    Cole, Jacqueline M.
    Jones, Timothy G. J.
    Jiang, Li
    APPLIED ORGANOMETALLIC CHEMISTRY, 2012, 26 (10) : 546 - 549