Anisotropic compactification of nonrelativistic M-theory

被引:6
|
作者
Ebert, Stephen [1 ]
Yan, Ziqi [2 ]
机构
[1] Univ Calif Los Angeles, Mani L Bhaumik Inst Theoret Phys, Dept Phys & Astron, Los Angeles, CA 90095 USA
[2] Nordita, Hannes Alfvens vag 12, SE-10691 Stockholm, Sweden
关键词
M-Theory; String Duality; D-Branes; M(atrix) Theories; MATRIX MODEL; COVARIANT ACTION; DUALITIES; M5-BRANE; 5-BRANE; FIELDS;
D O I
10.1007/JHEP11(2023)135
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We study a decoupling limit of M-theory where the three-form gauge potential becomes critical. This limit leads to nonrelativistic M-theory coupled to a non-Lorentzian spacetime geometry. Nonrelativistic M-theory is U-dual to M-theory in the discrete light cone quantization, a non-perturbative approach related to the Matrix theory description of M-theory. We focus on the compactification of nonrelativistic M-theory over a two-torus that exhibits anisotropic behaviors due to the foliation structure of the spacetime geometry. We develop a frame covariant formalism of the toroidal geometry, which provides a geometrical interpretation of the recently discovered polynomial realization of SL(2 , DOUBLE-STRUCK CAPITAL Z) duality in nonrelativistic type IIB superstring theory. We will show that the nonrelativistic IIB string background fields transform as polynomials of an effective Galilean "boost velocity" on the two-torus. As an application, we construct an action principle describing a single M5-brane in nonrelativistic M-theory and study its compactification over the anisotropic two-torus. This procedure leads to a D3-brane action in nonrelativistic IIB string theory that makes the SL(2 , DOUBLE-STRUCK CAPITAL Z) invariance manifest in the polynomial realization.
引用
收藏
页数:43
相关论文
共 50 条
  • [31] M-theory and hypercharge
    Lambert, ND
    West, PC
    JOURNAL OF HIGH ENERGY PHYSICS, 1999, (09):
  • [32] Monstrous M-Theory
    Marrani, Alessio
    Rios, Mike
    Chester, David
    SYMMETRY-BASEL, 2023, 15 (02):
  • [33] Little M-theory
    Cheng, Hsin-Chia
    Thaler, Jesse
    Wang, Lian-Tao
    JOURNAL OF HIGH ENERGY PHYSICS, 2006, (09):
  • [34] Orbifolds of M-theory
    Dasgupta, K
    Mukhi, S
    NUCLEAR PHYSICS B, 1996, 465 (03) : 399 - 412
  • [35] Progress in M-theory
    Duff, MJ
    THEORETICAL HIGH ENERGY PHYSICS: MRST 2001: A TRIBUTE TO ROGER MIGNERON, 2001, 601 : 3 - 18
  • [36] Time and M-theory
    Jejjala, Vishnu
    Kavic, Michael
    Minic, Djordje
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2007, 22 (20): : 3317 - 3405
  • [37] M-theory and cosmology
    Banks, T
    PRIMORDIAL UNIVERSE, 2000, 71 : 495 - 579
  • [38] The quest for M-theory
    Gran, U.
    Doktorsavhandlingar vid Chalmers Tekniska Hogskola, 2001, (1734):
  • [39] The M-theory archipelago
    Nathan B. Agmon
    Shai M. Chester
    Silviu S. Pufu
    Journal of High Energy Physics, 2020
  • [40] Supergravity and M-theory
    Bernard de Wit
    Maaike van Zalk
    General Relativity and Gravitation, 2009, 41 : 757 - 784