Anisotropic compactification of nonrelativistic M-theory

被引:6
|
作者
Ebert, Stephen [1 ]
Yan, Ziqi [2 ]
机构
[1] Univ Calif Los Angeles, Mani L Bhaumik Inst Theoret Phys, Dept Phys & Astron, Los Angeles, CA 90095 USA
[2] Nordita, Hannes Alfvens vag 12, SE-10691 Stockholm, Sweden
关键词
M-Theory; String Duality; D-Branes; M(atrix) Theories; MATRIX MODEL; COVARIANT ACTION; DUALITIES; M5-BRANE; 5-BRANE; FIELDS;
D O I
10.1007/JHEP11(2023)135
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We study a decoupling limit of M-theory where the three-form gauge potential becomes critical. This limit leads to nonrelativistic M-theory coupled to a non-Lorentzian spacetime geometry. Nonrelativistic M-theory is U-dual to M-theory in the discrete light cone quantization, a non-perturbative approach related to the Matrix theory description of M-theory. We focus on the compactification of nonrelativistic M-theory over a two-torus that exhibits anisotropic behaviors due to the foliation structure of the spacetime geometry. We develop a frame covariant formalism of the toroidal geometry, which provides a geometrical interpretation of the recently discovered polynomial realization of SL(2 , DOUBLE-STRUCK CAPITAL Z) duality in nonrelativistic type IIB superstring theory. We will show that the nonrelativistic IIB string background fields transform as polynomials of an effective Galilean "boost velocity" on the two-torus. As an application, we construct an action principle describing a single M5-brane in nonrelativistic M-theory and study its compactification over the anisotropic two-torus. This procedure leads to a D3-brane action in nonrelativistic IIB string theory that makes the SL(2 , DOUBLE-STRUCK CAPITAL Z) invariance manifest in the polynomial realization.
引用
收藏
页数:43
相关论文
共 50 条
  • [11] Flux compactification geometries and de Sitter vacua in M-theory
    Krause, Axel
    SNOWBIRD LECTURES ON STRING GEOMETRY, 2006, 401 : 53 - 68
  • [12] A supersymmetric and smooth compactification of M-theory to AdS5
    Cucu, S
    Lü, H
    Vázquez-Poritz, JF
    PHYSICS LETTERS B, 2003, 568 (3-4) : 261 - 269
  • [13] Orbifold compactification and solutions of M-theory from Milne spaces
    Bytsenko, AA
    Guimaraes, MEX
    Kerner, R
    EUROPEAN PHYSICAL JOURNAL C, 2005, 39 (04): : 519 - 524
  • [14] Hyperbolic compactification of M-theory and de Sitter quantum gravity
    De Luca, Giuseppe Bruno
    Silverstein, Eva
    Torroba, Gonzalo
    SCIPOST PHYSICS, 2022, 12 (03):
  • [15] A comment on compactification of M-theory on an (almost) light-like circle
    Bilal, A
    NUCLEAR PHYSICS B, 1998, 521 (1-2) : 202 - 216
  • [16] Flux compactification of M-theory on compact manifolds with Spin(7) holonomy
    Constantin, D
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2005, 53 (11-12): : 1272 - 1329
  • [17] Inflation from superstring and M-theory compactification with higher order corrections
    Maeda, K
    Ohta, N
    PHYSICAL REVIEW D, 2005, 71 (06): : 1 - 27
  • [18] Noncritical M-theory in 2+1 dimensions as a nonrelativistic Fermi liquid
    Horava, Petr
    Keeler, Cynthia A.
    JOURNAL OF HIGH ENERGY PHYSICS, 2007, (07):
  • [19] M-theory compactification, fluxes, and AdS4 -: art. no. 046005
    Lukas, A
    Saffin, PM
    PHYSICAL REVIEW D, 2005, 71 (04): : 046005 - 1
  • [20] A note on T-5/Z(2) compactification of the M-theory matrix model
    Fayyazuddin, A
    Smith, DJ
    PHYSICS LETTERS B, 1997, 407 (01) : 8 - 11