Toward universal cell embeddings: integrating single-cell RNA-seq datasets across species with SATURN

被引:17
|
作者
Rosen, Yanay [1 ]
Brbic, Maria [2 ]
Roohani, Yusuf [3 ]
Swanson, Kyle [1 ]
Li, Ziang [4 ]
Leskovec, Jure [1 ]
机构
[1] Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA
[2] Swiss Fed Inst Technol EPFL, Sch Comp & Commun Sci, Lausanne, Switzerland
[3] Stanford Univ, Dept Biomed Data Sci, Stanford, CA USA
[4] Tsinghua Univ, Dept Comp Sci & Technol, Beijing, Peoples R China
基金
美国国家卫生研究院;
关键词
RESONANCE MASS-SPECTROMETRY; BRAIN; THROUGHPUT; ATLAS; METABOLITES; MICROSCOPY; SIGNALS;
D O I
10.1038/s41592-024-02191-z
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Analysis of single-cell datasets generated from diverse organisms offers unprecedented opportunities to unravel fundamental evolutionary processes of conservation and diversification of cell types. However, interspecies genomic differences limit the joint analysis of cross-species datasets to homologous genes. Here we present SATURN, a deep learning method for learning universal cell embeddings that encodes genes' biological properties using protein language models. By coupling protein embeddings from language models with RNA expression, SATURN integrates datasets profiled from different species regardless of their genomic similarity. SATURN can detect functionally related genes coexpressed across species, redefining differential expression for cross-species analysis. Applying SATURN to three species whole-organism atlases and frog and zebrafish embryogenesis datasets, we show that SATURN can effectively transfer annotations across species, even when they are evolutionarily remote. We also demonstrate that SATURN can be used to find potentially divergent gene functions between glaucoma-associated genes in humans and four other species. SATURN performs cross-species integration and analysis using both single-cell gene expression and protein representations generated by protein language models.
引用
收藏
页码:1492 / 1500
页数:29
相关论文
共 50 条
  • [31] Integrative Single-Cell RNA-Seq and Single-Cell ATAC-Seq Analysis of Human Plasma Cell Differentiation
    Alaterre, Elina
    Ovejero, Sara
    Espeli, Marion
    Fest, Thierry
    Cogne, Michel
    Milpied, Pierre
    Cavalli, Giacomo
    Moreaux, Jerome
    BLOOD, 2023, 142
  • [32] Practical Compass of Single-Cell RNA-Seq Analysis
    Okada, Hiroyuki
    Chung, Ung-il
    Hojo, Hironori
    CURRENT OSTEOPOROSIS REPORTS, 2024, 22 (05) : 433 - 440
  • [33] Embracing the dropouts in single-cell RNA-seq analysis
    Peng Qiu
    Nature Communications, 11
  • [34] How deep is enough in single-cell RNA-seq?
    Aaron M Streets
    Yanyi Huang
    Nature Biotechnology, 2014, 32 : 1005 - 1006
  • [35] Guidelines for reporting single-cell RNA-seq experiments
    Anja Füllgrabe
    Nancy George
    Matthew Green
    Parisa Nejad
    Bruce Aronow
    Silvie Korena Fexova
    Clay Fischer
    Mallory Ann Freeberg
    Laura Huerta
    Norman Morrison
    Richard H. Scheuermann
    Deanne Taylor
    Nicole Vasilevsky
    Laura Clarke
    Nils Gehlenborg
    Jim Kent
    John Marioni
    Sarah Teichmann
    Alvis Brazma
    Irene Papatheodorou
    Nature Biotechnology, 2020, 38 : 1384 - 1386
  • [36] Single-cell RNA-Seq unveils tumor microenvironment
    Lee, Hae-Ock
    Park, Woong-Yang
    BMB REPORTS, 2017, 50 (06) : 283 - 284
  • [37] From single-cell RNA-seq to transcriptional regulation
    Gioele La Manno
    Nature Biotechnology, 2019, 37 : 1421 - 1422
  • [38] Comparison of transformations for single-cell RNA-seq data
    Constantin Ahlmann-Eltze
    Wolfgang Huber
    Nature Methods, 2023, 20 : 665 - 672
  • [39] Single-cell RNA-seq keeps cells alive
    Eleni Kotsiliti
    Nature Biotechnology, 2022, 40 : 1432 - 1432
  • [40] How deep is enough in single-cell RNA-seq?
    Streets, Aaron M.
    Huang, Yanyi
    NATURE BIOTECHNOLOGY, 2014, 32 (10) : 1005 - 1006