Degradable 3D Printed Objects with Tunable Mechanical Properties via Photoinduced Free Radical Promoted Cationic RAFT Polymerization

被引:5
|
作者
Zhao, Bowen [1 ]
Li, Jiajia [1 ]
Yang, Xinrui [1 ]
He, Shiliang [1 ]
Pan, Xiangqiang [1 ]
Zhu, Jian [1 ]
机构
[1] Soochow Univ, Coll Chem Chem Engn & Mat Sci,Jiangsu Key Lab Adv, Dept Polymer Sci & Engn,Suzhou Key Lab Macromol De, State Local Joint Engn Lab Novel Funct Polymer Mat, Suzhou 215123, Peoples R China
基金
中国国家自然科学基金;
关键词
3D printing; cationic RAFT polymerization; degradable polymer; photopolymerization; post functionalization; OXYGEN-TOLERANT; POLYMERS;
D O I
10.1021/acsapm.3c03164
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The emergence and development of photopolymerization 3D printing based on controlled polymerization techniques have shown significant advantages in the fabrication of "living" polymeric materials with various functionalities. However, it is crucial to consider the degradation of these printed objects for environmentally friendly development. Herein, mono-, bi-, and trifunctional vinyl ether monomers with degradable ester cores were synthesized and used in 3D printing via photoinduced free radical promoted cationic reversible addition-fragmentation chain transfer polymerization. The model polymerization and printing conditions using these monomers were studied in detail. A fast printing speed (7.61-10.23 cm h(-1)) and tunable mechanical properties (tensile strength ranging from 1.7 to 41.6 MPa and Young's modulus ranging from 6.5 MPa to 1.3 GPa) can be achieved by adjusting the printing resins. Moreover, partial starting material (benzoic acids) could be easily recovered after degradation of the printed objects, offering a promising avenue for advancing the sustainable development of photopolymerization 3D printing based on controlled polymerization.
引用
收藏
页码:1584 / 1591
页数:8
相关论文
共 50 条
  • [41] Thermal treatment influence on optical properties of 3D printed objects by vat photopolymerization
    Filimonova, E. A.
    Lozovaya, A. V.
    Prosyankin, E. E.
    Mustafina, A. R.
    Chapala, Pavel
    PROGRESS IN ADDITIVE MANUFACTURING, 2025, 10 (04) : 2703 - 2713
  • [42] Effect of ionising radiation on the mechanical and structural properties of 3D printed plastics
    Wady, Paul
    Wasilewski, Alex
    Brock, Lucy
    Edge, Ruth
    Baidak, Aliaksandr
    McBride, Connor
    Leay, Laura
    Griffiths, Arron
    Valles, Cristina
    ADDITIVE MANUFACTURING, 2020, 31
  • [43] Impact of graphene reinforcement on mechanical properties of PLA 3D printed materials
    Marconi, S.
    Alaimo, G.
    Mauri, V
    Torre, M.
    Auricchio, F.
    2017 IEEE MTT-S INTERNATIONAL MICROWAVE WORKSHOP SERIES ON ADVANCED MATERIALS AND PROCESSES FOR RF AND THZ APPLICATIONS (IMWS-AMP), 2017,
  • [44] Statistical models for the mechanical properties of 3D printed external medical aids
    Moreno, Rafael
    Carou, Diego
    Carazo-Alvarez, Daniel
    Gupta, Munish Kumar
    RAPID PROTOTYPING JOURNAL, 2021, 27 (01) : 176 - 186
  • [45] Investigations of the Mechanical Properties of DLP 3D Printed Graphene/Resin Composites
    Hanon, Muammel M.
    Ghaly, Arsany
    Zsidai, Laszlo
    Szakal, Zoltan
    Szabo, Istvan
    Katai, Laszlo
    ACTA POLYTECHNICA HUNGARICA, 2021, 18 (08) : 143 - 161
  • [46] 3D printed mesh reinforcements enhance the mechanical properties of electrospun scaffolds
    Nicholas W. Pensa
    Andrew S. Curry
    Paul P. Bonvallet
    Nathan F. Bellis
    Kayla M. Rettig
    Michael S. Reddy
    Alan W. Eberhardt
    Susan L. Bellis
    Biomaterials Research, 23
  • [47] Mechanical Properties of 3D Printed Composite Material on Various Thermal Environment
    Kang, Sang-Hun
    Kim, Do-Hyeon
    Seo, Hyoung-Seock
    COMPOSITES RESEARCH, 2023, 36 (03): : 193 - 198
  • [48] Research on the Preparation and Mechanical Properties of Solidified 3D Printed Concrete Materials
    Shen, Yuhang
    Lin, Li
    Wei, Shengjie
    Yan, Jie
    Xu, Tianli
    BUILDINGS, 2022, 12 (12)
  • [49] Investigation of elasticity in the mechanical properties of 3D printed PLA bolt sample
    Alkhalaf, Faisal
    Almughier, Rashed
    Alolaiwy, Asim
    Albadrani, Mohammed
    ADVANCES IN MATERIALS AND PROCESSING TECHNOLOGIES, 2024, 10 (03) : 1856 - 1868
  • [50] Research Progress on Mechanical Properties of 3D Printed Biomedical Titanium Alloys
    Sun, Ying
    Hu, Wenchao
    Wu, Chenliang
    Kuang, Hai
    Wang, Jie
    Zhang, Song
    Yan, Tingting
    Wang, Qiang
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2023, 32 (21) : 9489 - 9503