High-Spatiotemporal-Resolution Estimation of Ground-Level Ozone in China Based on Machine Learning

被引:3
作者
Chen, Jiahuan [1 ]
Dong, Heng [1 ,2 ]
Zhang, Zili [3 ,4 ]
Quan, Bingqian [3 ]
Luo, Lan [5 ]
机构
[1] Wuhan Univ Technol, Sch Resources & Environm Engn, Wuhan 430070, Peoples R China
[2] Zhejiang Spatiotemporal Sophon Bigdata Co Ltd, Ningbo 315101, Peoples R China
[3] Ecol Environm Monitoring Ctr Zhejiang, Hangzhou 310012, Peoples R China
[4] Zhejiang Key Lab Ecol Environm Monitoring, Early Warning & Qual Control, Hangzhou 310032, Peoples R China
[5] Zhejiang Ecol & Environm Monitoring Ctr, Zhejiang Key Lab Ecol & Environm Big Data 2022P100, Hangzhou 310012, Peoples R China
关键词
ground-level ozone; high-spatiotemporal-resolution; machine learning; TROPOSPHERIC OZONE; POLLUTION; MODEL;
D O I
10.3390/atmos15010034
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
High concentrations of ground-level ozone (O3) pose a significant threat to human health. Obtaining high-spatiotemporal-resolution information about ground-level O3 is of paramount importance for O3 pollution control. However, the current monitoring methods have a lot of limitations. Ground-based monitoring falls short in providing extensive coverage, and remote sensing based on satellites is constrained by specific spectral bands, lacking sensitivity to ground-level O3. To address this issue, we combined brightness temperature data from the Himawari-8 satellite with meteorological data and ground-based station data to train four machine learning models to obtain high-spatiotemporal-resolution information about ground-level O3, including Categorical Boosting (CatBoost), eXtreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LGBM), and Random Forest (RF). Among these, the CatBoost model exhibited superior performance, achieving a ten-fold cross-validation R2 of 0.8534, an RMSE of 17.735 mu g/m3, and an MAE of 12.6594 mu g/m3. Furthermore, all the selected feature variables in our study positively influenced the model. Subsequently, we employed the CatBoost model to estimate averaged hourly ground-level O3 concentrations at a 2 km resolution. The estimation results indicate a close relationship between ground-level O3 concentrations and human activities and solar radiation.
引用
收藏
页数:15
相关论文
共 46 条
[1]   Effect of different emission inventories on modeled ozone and carbon monoxide in Southeast Asia [J].
Amnuaylojaroen, T. ;
Barth, M. C. ;
Emmons, L. K. ;
Carmichael, G. R. ;
Kreasuwun, J. ;
Prasitwattanaseree, S. ;
Chantara, S. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2014, 14 (23) :12983-13012
[2]   An Introduction to Himawari-8/9-Japan's New-Generation Geostationary Meteorological Satellites [J].
Bessho, Kotaro ;
Date, Kenji ;
Hayashi, Masahiro ;
Ikeda, Akio ;
Imai, Takahito ;
Inoue, Hidekazu ;
Kumagai, Yukihiro ;
Miyakawa, Takuya ;
Murata, Hidehiko ;
Ohno, Tomoo ;
Okuyama, Arata ;
Oyama, Ryo ;
Sasaki, Yukio ;
Shimazu, Yoshio ;
Shimoji, Kazuki ;
Sumida, Yasuhiko ;
Suzuki, Masuo ;
Taniguchi, Hidetaka ;
Tsuchiyama, Hiroaki ;
Uesawa, Daisaku ;
Yokota, Hironobu ;
Yoshida, Ryo .
JOURNAL OF THE METEOROLOGICAL SOCIETY OF JAPAN, 2016, 94 (02) :151-183
[3]   Measurements of total and tropospheric ozone from IASI: comparison with correlative satellite, ground-based and ozonesonde observations [J].
Boynard, A. ;
Clerbaux, C. ;
Coheur, P. -F. ;
Hurtmans, D. ;
Turquety, S. ;
George, M. ;
Hadji-Lazaro, J. ;
Keim, C. ;
Meyer-Arnek, J. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2009, 9 (16) :6255-6271
[4]   Estimation of near-surface ozone concentration and analysis of main weather situation in China based on machine learning model and Himawari-8 TOAR data [J].
Chen, Bin ;
Wang, Yixuan ;
Huang, Jianping ;
Zhao, Lin ;
Chen, Ruming ;
Song, Zhihao ;
Hu, Jiashun .
SCIENCE OF THE TOTAL ENVIRONMENT, 2023, 864
[5]   Ground-level ozone estimation based on geo-intelligent machine learning by fusing in-situ observations, remote sensing data, and model simulation data [J].
Chen, Jiajia ;
Shen, Huanfeng ;
Li, Xinghua ;
Li, Tongwen ;
Wei, Ying .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2022, 112
[6]   Understanding the causal influence of major meteorological factors on ground ozone concentrations across China [J].
Chen, Ziyue ;
Li, Ruiyuan ;
Chen, Danlu ;
Zhuang, Yan ;
Gao, Bingbo ;
Yang, Lin ;
Li, Manchun .
JOURNAL OF CLEANER PRODUCTION, 2020, 242
[7]   Monitoring of atmospheric composition using the thermal infrared IASI/MetOp sounder [J].
Clerbaux, C. ;
Boynard, A. ;
Clarisse, L. ;
George, M. ;
Hadji-Lazaro, J. ;
Herbin, H. ;
Hurtmans, D. ;
Pommier, M. ;
Razavi, A. ;
Turquety, S. ;
Wespes, C. ;
Coheur, P. -F. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2009, 9 (16) :6041-6054
[8]   Characteristics Analysis of the Surface Ozone Concentration of China in 2015 [J].
Duan, Xiao-Tong ;
Cao, Nian-Wen ;
Wang, Xiao ;
Zhang, Yu-Xin ;
Liang, Jing-Shu ;
Yang, Si-Peng ;
Song, Xiu-Yu .
Huanjing Kexue/Environmental Science, 2017, 38 (12) :4976-4982
[9]  
Felder M., 2013, Proc. ESA Living Planet Symp, V722, P219
[10]   TROPOSPHERIC OZONE AND CLIMATE [J].
FISHMAN, J ;
RAMANATHAN, V ;
CRUTZEN, PJ ;
LIU, SC .
NATURE, 1979, 282 (5741) :818-820