Improving the prediction of extreme wind speed events with generative data augmentation techniques

被引:6
|
作者
Vega-Bayo, M. [1 ]
Perez-Aracil, J. [1 ]
Prieto-Godino, L. [1 ,2 ]
Salcedo-Sanz, S. [1 ]
机构
[1] Univ Alcala, Dept Signal Proc & Commun, Alcala De Henares 28805, Spain
[2] Dept Digitalizat & O&N Tools, Iberdrola, Spain
关键词
Extreme wind speed; Prediction systems; Machine learning; Variational autoencoders; Data augmentation techniques; CLASSIFICATION; TRENDS;
D O I
10.1016/j.renene.2023.119769
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Extreme Wind Speed events (EWS) are responsible for the worst damages caused by wind in wind farms. An accurate estimation of the frequency and intensity of EWS is essential to avoid wind turbine damage and to minimize cut-out events in these facilities. In this paper we discuss how generative Data Augmentation (DA) techniques improve the performance of Machine Learning (ML) and Deep Learning (DL) algorithms in EWS prediction problems. These problems are usually tackled as classification tasks, which are highly unbalanced due to the small number of EWS events in wind farms. Different versions of Variational AutoEncoders (VAE) are proposed and analysed in this work (VAEs, Conditional VAEs (CVAEs) and Class-Informed VAEs (CI-VAE)) as generative DA techniques to balance the data in EWS problems, leading to better performance of the prediction systems. The proposed generative DA techniques have been compared against traditional DA algorithms in a real problem of EWS prediction in Spain, considering ERA5 reanalysis data as predictive variables. The results showed that the CI-VAE with a Convolutional Neural Network approach obtained the best results, with values of Precision 0.62, Recall 0.74 and F1 score 0.67, improving up to 4% the results of the method without data augmentation techniques.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] The effect of Data Augmentation Using SMOTE: Diabetes Prediction by Machine Learning Techniques
    Al-Qerem, A.
    Ali, A. M.
    Alauthman, M.
    Al Khaldy, M.
    Aldweesh, A.
    PROCEEDINGS OF 2023 6TH ARTIFICIAL INTELLIGENCE AND CLOUD COMPUTING CONFERENCE, AICCC 2023, 2023, : 13 - 20
  • [22] Wind Speed Prediction of Target Station from Reference Stations Data
    Bilgili, M.
    Sahin, B.
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2013, 35 (05) : 455 - 466
  • [23] Addressing Data Scarcity in Solar Energy Prediction with Machine Learning and Augmentation Techniques
    Gevorgian, Aleksandr
    Pernigotto, Giovanni
    Gasparella, Andrea
    ENERGIES, 2024, 17 (14)
  • [24] Aggregation of data from multiple recording stations for extreme wind analysis and prediction
    Wang, Chi-Hsiang
    Holmes, John D.
    STRUCTURAL SAFETY, 2024, 111
  • [25] A new cyclical generative adversarial network based data augmentation method for multiaxial fatigue life prediction
    Sun, Xingyue
    Zhou, Kun
    Shi, Shouwen
    Song, Kai
    Chen, Xu
    INTERNATIONAL JOURNAL OF FATIGUE, 2022, 162
  • [26] Machine Learning and Synthetic Minority Oversampling Techniques for Imbalanced Data: Improving Machine Failure Prediction
    Wah, Yap Bee
    Ismail, Azlan
    Azid, Nur Niswah Naslina
    Jaafar, Jafreezal
    Aziz, Izzatdin Abdul
    Hasan, Mohd Hilmi
    Zain, Jasni Mohamad
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 75 (03): : 4821 - 4841
  • [27] Very Short-Term Wind Speed Prediction Techniques Using Machine Learning
    Mogos, Aman Samson
    Salauddin, Md
    Liang, Xiaodong
    Chung, Chi Yung
    2021 IEEE CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (CCECE), 2021,
  • [28] Off seasons, holidays and extreme weather events: Using data-mining techniques on smart meter and energy consumption data from China
    Kang, Jieyi
    Reiner, David M.
    ENERGY RESEARCH & SOCIAL SCIENCE, 2022, 89
  • [29] Data Augmentation of a Corrosion Dataset for Defect Growth Prediction of Pipelines Using Conditional Tabular Generative Adversarial Networks
    Ma, Haonan
    Geng, Mengying
    Wang, Fan
    Zheng, Wenyue
    Ai, Yibo
    Zhang, Weidong
    MATERIALS, 2024, 17 (05)
  • [30] Improving Solar Energetic Particle Event Prediction through Multivariate Time Series Data Augmentation
    Hosseinzadeh, Pouya
    Filali Boubrahimi, Soukaina
    Hamdi, Shah Muhammad
    ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2024, 270 (02)