High-sensitivity few-mode heterodyne receiver with a few-mode optical fiber amplifier for turbulence resistance in free space optical communication

被引:1
作者
Ma, Wenqi [1 ]
Yu, Cheng [1 ]
Yang, Fan [1 ]
Hu, Guijun [1 ]
机构
[1] Jilin Univ, Coll Commun Engn, Changchun 130012, Peoples R China
基金
中国国家自然科学基金;
关键词
Free -space optical communication; Atmospheric turbulence; Few-mode optical fiber amplifier; Kramers -Kronig detection; High sensitivity; PERFORMANCE;
D O I
10.1016/j.optcom.2023.130126
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In the field of free-space optical communication (FSOC), the sensitivity of the receiver can be affected by atmospheric turbulence, leading to light-intensity scintillation or beam drift. This paper offers a solution to this challenge by proposing a few-mode heterodyne receiver with a few-mode optical fiber amplifier (FM-OFA). The FM-OFA is used in the few-mode heterodyne receiver to enhance the output power of different modes of signal light, and the amplified signal light is detected by the few-mode heterodyne detection based on Kramers-Kronig (KK) relations, which effectively suppresses the atmospheric turbulence effect and improves the sensitivity of the receiver. In addition, we build an FSOC system and verify the sensitivity performance of this receiver under different turbulence conditions. The experimental results show that the sensitivities of the few-mode heterodyne receiver with an FM-OFA are -42.6dBm, -41.3dBm, and -40.7dBm, respectively, which are 8.8 dB, 8.5 dB, and 9.3 dB higher than those of the few-mode heterodyne receiver without an FM-OFA at average BER = 10-3 under low, moderate, and high turbulence intensities.
引用
收藏
页数:6
相关论文
共 21 条
  • [1] A contemporary survey on free space optical communication: Potentials, technical challenges, recent advances and research direction
    Abu Jahid
    Alsharif, Mohammed H.
    Hall, Trevor J.
    [J]. JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2022, 200
  • [2] Performance of mode diversity reception of a polarization-division-multiplexed signal for free-space optical communication under atmospheric turbulence
    Arikawa, Manabu
    Ito, Toshiharu
    [J]. OPTICS EXPRESS, 2018, 26 (22): : 28263 - 28276
  • [3] The photonic lantern
    Birks, T. A.
    Gris-Sanchez, I.
    Yerolatsitis, S.
    Leon-Saval, S. G.
    Thomson, R. R.
    [J]. ADVANCES IN OPTICS AND PHOTONICS, 2015, 7 (02): : 107 - 167
  • [4] Coherent Free-Space Optical Communications: Opportunities and Challenges
    Guiomar, Fernando P.
    Fernandes, Marco A.
    Nascimento, Jose Leonardo
    Rodrigues, Vera
    Monteiro, Paulo P.
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2022, 40 (10) : 3173 - 3186
  • [5] Deep-Space Optical Communications: Future Perspectives and Applications
    Hemmati, Hamid
    Biswas, Abhijit
    Djordjevic, Ivan B.
    [J]. PROCEEDINGS OF THE IEEE, 2011, 99 (11) : 2020 - 2039
  • [6] High spatial-density, cladding-pumped 6-mode 7-core fiber amplifier for C-band operation
    Jain, S.
    Sakamoto, T.
    Jung, Y.
    Davidson, I. A.
    Barua, P.
    Hayes, J. R.
    Shibahara, K.
    Mizuno, T.
    Miyamoto, Y.
    Nakajima, K.
    Richardson, D. J.
    [J]. OPTICS EXPRESS, 2021, 29 (19): : 30675 - 30681
  • [7] Optical Communication in Space: Challenges and Mitigation Techniques
    Kaushal, Hemani
    Kaddoum, Georges
    [J]. IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2017, 19 (01): : 57 - 96
  • [8] Survey on Free Space Optical Communication: A Communication Theory Perspective
    Khalighi, Mohammad Ali
    Uysal, Murat
    [J]. IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2014, 16 (04): : 2231 - 2258
  • [9] Digital coherent optical communication systems: fundamentals and future prospects
    Kikuchi, Kazuro
    [J]. IEICE ELECTRONICS EXPRESS, 2011, 8 (20): : 1642 - 1662
  • [10] Leitgeb E, 2008, OPT FIBER COMMUN REP, P273, DOI 10.1007/s10297-004-0025-x