A uniformizable spherical CR structure on a two-cusped hyperbolic 3-manifold

被引:3
|
作者
Jiang, Yueping [1 ]
Wang, Jieyan [1 ]
Xie, Baohua [1 ]
机构
[1] Hunan Univ, Sch Math, Changsha, Peoples R China
来源
ALGEBRAIC AND GEOMETRIC TOPOLOGY | 2023年 / 23卷 / 09期
关键词
FIGURE; 8; KNOT; COMPLEMENT;
D O I
10.2140/agt.2023.23.4143
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let < I-1, I-2, I-3 > be the complex hyperbolic (4, 4, infinity) triangle group. We prove Schwartz's conjecture that < I-1, I-2, I-3 > is discrete and faithful if and only if I-1 I-3 I-2 I-3 is nonelliptic. If I-1 I-3 I-2 I-3 is parabolic, we show that the even subgroup < I-2 I-3, I2I1 > i is the holonomy representation of a uniformizable spherical CR structure on the two-cusped hyperbolic 3-manifold s782 in SnapPy notation.
引用
收藏
页码:4143 / 4184
页数:43
相关论文
共 50 条