Machine-learning based VMAF prediction for HDR video content

被引:2
|
作者
Mueller, Christoph [1 ]
Steglich, Stephan [1 ]
Gross, Sandra [2 ]
Kremer, Paul [2 ]
机构
[1] Fraunhofer FOKUS, Berlin, Germany
[2] RTL Technol, Cologne, Germany
关键词
VMAF; video quality; HDR; neural networks; machine learning;
D O I
10.1145/3587819.3593941
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a methodology for predicting VMAF video quality scores for high dynamic range (HDR) video content using machine learning. To train the ML model, we are collecting a dataset of HDR and converted SDR video clips, as well as their corresponding objective video quality scores, specifically the Video Multimethod Assessment Fusion (VMAF) values. A 3D convolutional neural network (3D-CNN) model is being trained on the collected dataset. Finally, a hands-on demonstrator is developed to showcase the newly predicted HDR-VMAF metric in comparison to VMAF and other metric values for SDR content, and to conduct further validation with user testing.
引用
收藏
页码:328 / 332
页数:5
相关论文
共 50 条
  • [41] Design of Machine-Learning Classifier for Stock Market Prediction
    Srivastava A.K.
    Srivastava A.
    Singh S.
    Sugandha S.
    Tripta
    Gupta S.
    SN Computer Science, 2022, 3 (1)
  • [42] Machine-learning methods for stream water temperature prediction
    Feigl, Moritz
    Lebiedzinski, Katharina
    Herrnegger, Mathew
    Schulz, Karsten
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2021, 25 (05) : 2951 - 2977
  • [43] Image and video compression for HDR content
    Zhang, Yang
    Reinhard, Erik
    Agrafiotis, Dimitris
    Bull, David R.
    APPLICATIONS OF DIGITAL IMAGE PROCESSING XXXV, 2012, 8499
  • [44] Machine-learning for the prediction of one-year seizure recurrence based on routine electroencephalography
    Émile Lemoine
    Denahin Toffa
    Geneviève Pelletier-Mc Duff
    An Qi Xu
    Mezen Jemel
    Jean-Daniel Tessier
    Frédéric Lesage
    Dang K. Nguyen
    Elie Bou Assi
    Scientific Reports, 13
  • [45] Structure-based prediction of BRAF mutation classes using machine-learning approaches
    Fanny S. Krebs
    Christian Britschgi
    Sylvain Pradervand
    Rita Achermann
    Petros Tsantoulis
    Simon Haefliger
    Andreas Wicki
    Olivier Michielin
    Vincent Zoete
    Scientific Reports, 12
  • [46] rSeqTU-A Machine-Learning Based R Package for Prediction of Bacteria Transcription Units
    Niu, Sheng-Yong
    Liu, Binqiang
    Ma, Qin
    Chou, Wen-Chi
    FRONTIERS IN GENETICS, 2019, 10
  • [47] Prediction of future cognitive impairment among the community elderly: a machine-learning based approach
    Na, K. S.
    EUROPEAN PSYCHIATRY, 2019, 56 : S431 - S431
  • [48] Machine-learning based prediction of injection rate and solenoid voltage characteristics in GDI injectors
    Oh, Heechang
    Hwang, Joonsik
    Pickett, Lyle M.
    Han, Donghee
    FUEL, 2022, 311
  • [49] Landslide Susceptibility Prediction Considering Regional Soil Erosion Based on Machine-Learning Models
    Huang, Faming
    Chen, Jiawu
    Du, Zhen
    Yao, Chi
    Huang, Jinsong
    Jiang, Qinghui
    Chang, Zhilu
    Li, Shu
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2020, 9 (06)
  • [50] On User-Centric Modular QoE Prediction for VoIP Based on Machine-Learning Algorithms
    Charonyktakis, Paulos
    Plakia, Maria
    Tsamardinos, Ioannis
    Papadopouli, Maria
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2016, 15 (06) : 1443 - 1456